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TODORCEVIC ORDERINGS AS EXAMPLES OF CCC

FORCINGS WITHOUT ADDING RANDOM REALS

TERUYUKI YORIOKA

Abstract. In [13], Todorcevic introduced a ccc forcing which is Borel defin-
able in a separable metric space. In [2], Balcar, Pazák and Thümmel applied
it to more general topological spaces and called such forcings Todorcevic or-

derings. In [2], they analyze Todorcevic orderings quite deeply. A significant
remark is that Thümmel solved the problem of Horn and Tarski by use of
Todorcevic ordering [11].

This paper supplements the analysis of Todorcevic orderings due to Balcar,

Pazák and Thümmel in [2]. More precisely, it is proved that Todorcevic order-
ings add no random reals whenever they have the countable chain condition.

1. Introduction

In [13], Todorcevic introduced a Borel definable ccc forcing which consistently
does not have property K. He defined it on a separable metric space. By generalizing
it and applying it to other topological spaces, Thümmel discovered a forcing notion
which has the σ-finite chain condition but does not have the σ-bounded chain
condition, and so he solved the problem of Horn and Tarski [11]. (For Horn-Tarski’s
problem, see [5, 14].) Right after Thümmel’s result, Todorcevic introduced a Borel
definable solution of the problem of Horn and Tarski [15].

In [2], Balcar, Pazák and Thümmel applied Todorcevic’s Borel definable ccc forc-
ing in [13] to more general topological spaces. They called such forcings Todorcevic
orderings. In [2], they analyzed Todorcevic orderings from several view points. One
of them is about the countable chain condition. They introduced a sufficient condi-
tion for topological spaces (which is called condition 1, see below) for which Todor-
cevic orderings have the countable chain condition. Moreover, they introduced a
necessary and sufficient condition for topological spaces for which Todorcevic or-
derings have the countable chain condition under the Proper Forcing Axiom (in
fact, Todorcevic’s dichotomy for ω1-generated ideals suffices). They also found the
space for which Todorcevic ordering does not have the countable chain condition.

In [9], Solovay introduced notion of random reals in terms of forcing theory.
The phrase “adding a random real” is equivalent to the phrase “having a regular
subalgebra which supports a measure in terms of Boolean algebras”. In this paper,
we will show that Todorcevic orderings add no random reals whenever they have
the countable chain condition (ccc). Todorcevic [13] and Balcar-Pazák-Thümmel
[2] provided two sufficient conditions for topological spaces with the cccness of
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Todorcevic orderings. These conditions cover a wide class of topological spaces. So
many Todorcevic orderings add no random reals.

In fact, it is proved that ccc Todorcevic orderings satisfy the ω2-hyper-properness.
The hyper-properness was introduced by Dow-Steprāns [4]. In [4], the hyper-
properness is formulated for the Baire space ωω. The ω2-hyper-properness is
Dow-Steprāns’ hyper-properness about the Cantor space ω2 instead of ωω. The
ω2-hyper-properness is stronger than the property “adding no random reals”.

In §2, we argue the definition of Todorcevic orderings, their basic observations,
two sufficient conditions for topological spaces with the cccness of Todorcevic order-
ings, Dow-Steprāns’ hyper-properness, the theorem in this paper, and its remarks.
In §3, it is proved that Todorcevic orderings with the countable chain condition are
ω2-hyper-proper.

2. Preliminaries

2.1. Todorcevic orderings. As said in [2], when a topological space is applied to
Todorcevic ordering, it is natural to require it to be sequential and have the unique
limit property(1). A topological space X is called sequential if for any Z ⊆ X, Z
is closed in X iff for any A ⊆ Z and x ∈ X to which A converges, x belongs to
Z. A topological space X has the unique limit property if any converging subset of
X converges to the unique point. For example, Hausdorff spaces have the unique
limit property. For a subset F of a topological space, let F d denote the first Cantor-
Bendixson derivative of F , that is, the set of all accumulation points of F .

Definition 2.1 (Todorcevic [13], see also [2, 11]). For a topological space X, T(X)
is the set of all subsets of X which are unions of finitely many converging sequences
including their limit points, and for each p and q in T(X), q ≤T(X) p iff q ⊇ p and

qd ∩ p = pd.(2)

For p, q ∈ T(X), the statement q ≤T(X) p means that q is an extension of p (as
the subset relation) and the isolated points in p are still isolated in q. T(X) is called
Todorcevic ordering for the space X in [2, 11].

In [15], Todorcevic introduced the Borel definable version of Todorcevic order-
ings, which consists of all countable compact subsets whose first Cantor-Bendixson
derivative is finite. In [2], Balcar-Pazák-Thümmel introduced a separable version
of Todorcevic orderings, which consists of all functions f from members p of T(X)
into {0, 1} such that f−1(1) is a finite set including pd as a subset, ordered by the
function-extension. In this paper, we adopt the definition of Todorcevic orderings
in Definition 2.1. However, all of the proofs in this paper can be applied for the
other definitions without any change.

We note that T(X) is closed under finite unions, i.e. for every p, q ∈ T(X), p∪ q
is a condition of T(X) too. But then, p ∪ q may not be an extension of p or q. We
also note that each condition of T(X) is a countable closed subset of X.

(1)It is used to show that Todorcevic ordering for a space X has the ccc whenever X satisfies
condition 1. For condition 1, see below.

(2)This definition is slightly different from the original one, in [13], which consists of all finite
sets σ of convergent sequences in X including their limit points such that for any A,B ∈ σ,

lim(A) ̸∈ (B \ {lim(B)}),

ordered by the reverse inclusion. But essentially, both are same. In fact, both are forcing-
equivalent.
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In [13], Todorcevic proved that Todorcevic ordering for the reals has the count-
able chain condition [13, Claim 3]. His proof can be extended to spaces which
satisfy that any of its finite powers is hereditarily separable. Namely, for a space
X, if each of finite powers of X is hereditarily separable, then Todorcevic ordering
for X has the countable chain condition.

In [2], Balcar-Pazák-Thümmel analyzed for what spaces Todorcevic orderings
have the countable chain conditions. They gave the property, called condition 1,
for topological spaces X which is a sufficient condition to introduce Todorcevic
orderings to have the countable chain condition:

Condition 1: For any x ∈ X and Y ∈ [X]ℵ1 , there exists Y ′ ∈ [Y ]ℵ1 such that
any countable subset of Y ′ does not converge to the point x.

They pointed out that condition 1 is a weak property for topological spaces. Topo-
logical spaces with condition 1 includes first countable spaces (hence metric spaces),
linear ordered spaces, and hereditarily Lindelöf T1-spaces. It seems that condition
1 may not be related to the hereditary separability. A nonseparable metric space
has condition 1 but is not hereditarily separable. If a hereditarily separable space
does not have condition 1, it has to be an S-space. (For S-spaces, see e.g. [12].)

In [11], Thümmel discovered a counterexample of the problem of Horn and Tarski
in [5] whether every poset with the σ-finite chain condition also has the σ-bounded
chain condition. More precisely, he proved that Todorcevic ordering for the ordered

topological space

( ∪
α∈ω1

α+1
(ω∗) , <lex

)
(3) has the σ-finite chain condition but does

not have the σ-bounded chain condition. At first, the author proved that his
Todorcevic ordering adds no random reals.

Since a Boolean algebra which supports a measure has the σ-bounded chain con-
dition (see e.g. [1, §4], [14, §1]), it follows from Thümmel’s result that the Boolean
completion of his Todorcevic ordering does not support a measure. We recall that
the phrase “adding a random real” means the phrase “having a regular subalgebra
which supports a measure in terms of Boolean algebras”. So it follows from the
author’s result that a Boolean completion of Thümmel’s Todorcevic ordering has
no regular subalgebras which support a measure.

2.2. The ω2-hyper-properness. In [4, Definition 3.8], Dow and Steprāns intro-
duced the property for forcing notions like the following definition, called the hyper-
properness. This is a useful property to show some preservation theorems of the
iterated forcings. In fact, the hyper-properness is preserved by countable support
iterations. The original definition is formulated for the Baire space ωω. But in this
paper, we consider it on the Cantor space ω2. Two of them are slightly different,
so in this paper, we call the following the ω2-hyper properness.

Definition 2.2 (Dow-Steprāns). A forcing notion P is called ω2-hyper-proper if
for any regular cardinal κ > 2|P|, countable elementary submodel N of H(κ) which
contains P as a member, p ∈ P ∩N , and countable family A of open subsets of ω2,

(3)ω∗ stands for the set of natural numbers with the reverse order, and <lex stands for the

lexicographic order. We note that the space

 ∪
α∈ω1

α+1

(ω∗) , <lex

 satisfies the condition 1.
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if ω2∩N ⊆
∩

A, then there is an extension q of p in P such that q is (N,P)-generic
and

q ⊩P “
ω2 ∩N [Ġ] ⊆

∩
A ”.

Since the countable set can be covered by a Gδ Lebesgue measure zero set, the
ω2-hyper proper forcings add no random reals.

In §3, the following theorem is proved.

Theorem 2.3. For a topological space X, if T(X) has the countable chain condi-
tion, then T(X) is ω2-hyper-proper, and hence adds no random reals.

2.3. Remarks on the theorem. In the first draft of the paper, the author proved
that for a topological space X, if X satisfies one of the following cases, then T(X)
adds no random reals.

• Any of finite powers of X is hereditarily separable.
• X satisfies condition 1.

Proofs in two cases are in a similar fashion, which has been appeared in [19, Theorem
5.4] and [22]. The only difference in two cases is a proof of Claim in §3. The referee
let the author know about Dow-Steprāns’ hyper-properness and gave a proof of
Claim in the case that Todorcevic orderings have the ccc.

There are several non-ccc forcings which add no random reals, e.g. forcings
with the Laver property. But one does not know so many such ccc-examples. A
σ-centered forcing was the only well known ccc forcing without adding random
reals which is proved in ZFC (due to Judah and Repický [6, Lemma 6], see also [3,

Theorem 6.5.30])(4). As consistent examples, Suslin tree is such a typical example
(because this is a ccc forcing without adding new reals), and it is consistent that
there exists a ccc perfect poset (due to Velickovic [16, §4]). Talagrand found a
weakly distributive ccc σ-complete Boolean algebra which does not carry a measure
[10] (which answers Maharam’s problem); however, it is not known whether the
completion of Talagrand’s algebra has a regular subalgebra which carries a measure,
that is, which adds a random real.

In [19, Theorem 5.4], the author found a subclass of ccc forcings (which was
implicitly introduced by Larson and Todorcevic [7]) whose members add no random
reals ([19, Theorem 5.3], [21]). This subclass is somewhat wide, for example, it
includes a specializing an Aronszajn tree and an interpolating a destructible gap
[17, 18, 19, 20, 21]. The theorem in this paper gives a new class of ccc forcings
without adding random reals. This is the main motivation of this research.

3. Proof of the theorem

Suppose that X is a topological space such that T(X) has the countable chain
condition. We will show that T(X) is ω2-hyper-proper.

Let κ and λ be large enough regular cardinals such that(
2|X|

)+
< λ <

(
2λ
)+

< κ,

N a countable elementary submodel of H(κ) which contains all of finitely many
objects we need in the proof (in the current case, N contains X, P(X) and H(λ)

(4)Osuga and Kamo develop Judah-Repický’s result to σ-linked forcings of a strong form in
some sense [8].
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as members), p ∈ T(X)∩N , ⟨Un;n ∈ ω⟩ a sequence of open subsets of ω2 such that

ω2 ∩N ⊆
∩
n∈ω

Un,

and ẋ a T(X)-name for a real in ω2. We will show that

p ⊩T(X) “ ẋ ∈
∩
n∈ω

Un ”.

This is what we want.

Suppose that

p ̸⊩T(X) “ ẋ ∈
∩
n∈ω

Un ”,

and take an extension q of p in T(X) and m ∈ ω such that

q ⊩T(X) “ ẋ ̸∈ Um ”.

For each k ∈ ω, define

Sk :=
{
v ∈ k2 ; there exists a countable elementary submodel M of H(λ) which

contains the set
{
X,P(X), ẋ, qd ∩N

}
as a member such that for

every r ∈ T(X), if r satisfies the statement

(*) rd includes qd ∩N as a subset, the size of rd is equal to

the size of qd, and
(
rd \

(
qd ∩N

))
∩M = ∅,

then r ̸⊩T(X) “ ẋ↾k ̸= v ”
}
.

We note that the sequence ⟨Sk; k ∈ ω⟩ belongs to the model N and for each k ∈ ω,
it holds that

{v↾k ; v ∈ Sk+1} ⊆ Sk,

that is,
∪
k∈ω

Sk forms a subtree of 2<ω (with respect to the subset relation).

The following is the key point of the proof.

Claim. For every k ∈ ω, Sk is not empty.

We will show this later, and at first we finish the proof assuming Claim.
By our assumption and the elementarity of the model N , we can find u ∈ ω2∩N

such that for every k ∈ ω, u↾k ∈ Sk. Since
ω2 ∩N is covered by the intersection of

the open sets Un, we can take l ∈ ω such that

[u↾l] := {y ∈ ω2;u↾l ⊆ y} ⊆ Um.

Since u↾l ∈ Sl in the model N , there exists a countable elementary submodel
M ∈ N of H(λ) which witnesses the statement u↾l ∈ Sl. Then since q satisfies the
statement (*) above for this M in the definition of Sl, it follows that

q ̸⊩T(X) “ ẋ↾l ̸= u↾l ”.
Therefore there exists q′ ≤T(X) q such that

q′ ⊩T(X) “ ẋ↾l = u↾l ”.
But then

q′ ⊩T(X) “ ẋ ∈ [ẋ↾l] = [u↾l] ⊆ Um ”,

which is a contradiction.
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Proof of Claim (Due to the referee). Let k ∈ ω. We show that Sk is not empty.
Assume not, and let

{
vj ; j < 2k

}
be an enumeration of the set k2. Then by our

assumption, there exists a sequence
⟨
rjξ ; j < 2k, ξ ∈ ω1

⟩
of conditions of T(X) such

that

• for each j < 2k and ξ ∈ ω1,

rjξ ⊩T(X) “ ẋ↾k ̸= vj ”

and

• the set

{(
rjξ

)d
; j < 2k, ξ ∈ ω1

}
forms a ∆-system with root qd ∩N .

Then the set I :=

 ∪
j<2k

rjξ ; ξ ∈ ω1

 is an uncountable set of conditions of T(X).

(Here we don’t say that
∪

j<2k

rjξ is a common extension of the set
{
rjξ ; j < 2k

}
in

T(X). But each
∪

j<2k

rjξ is a condition of T(X).) Since T(X) is ccc, there exists

s ∈ T(X) which forces that I ∩ Ġ is uncountable (here Ġ is the canonical T(X)-

name for a generic filter). Then we can find s′ ≤T(X) s and
{
ξi; i < 2k

}
∈ [ω1]

2k

such that s′ forces that

 ∪
j<2k

rjξi ; i < 2k

 ⊆ Ġ. Then the set

 ∪
j<2k

rjξi ; i < 2k


has a common extension in T(X).

Therefore the set
{
riξi ; i < 2k

}
has a common extension in T(X), actually, the

set
∪
i<2k

riξi is its common extension. Then it follows that

∪
i<2k

riξi ⊩T(X) “ ẋ↾k ̸∈ k2 ”,

which is a contradiction.
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