Isolation and identification of spermidine derivatives in tea (Camellia sinensis) flowers and their distribution in floral organs

SURE 静岡大学学術リポジトリ Shizuoka University REpository

メタデータ	言語: eng
	出版者:
	公開日: 2015-07-21
	キーワード (Ja):
	キーワード (En):
	作成者: Yang, Ziyin, Dong, Fang, Baldermann, Susanne,
	Murata, Ariaki, Tu, Youying, Asai, Tatsuo, Watanabe,
	Naoharu
	メールアドレス:
	所属:
URL	http://hdl.handle.net/10297/9044

1	Title: Isolation and identification of spermidine derivatives in flowers of tea (Camellia
2	sinensis) plants and their distributions in floral organs
3	
4	Running title: Spermidine derivatives in tea flowers
5	
6	Authors: Ziyin Yang, ^a Fang Dong, ^a Susanne Baldermann, ^a Ariaki Murata, ^a Youying Tu, ^b
7	Tatsuo Asai, ^c Naoharu Watanabe ^{a, c*}
8	
9	Affiliations:
10	^a Graduate School of Science and Technology, Shizuoka University, 836 Ohya, Suruga-ku,
11	Shizuoka 422-8529, Japan
12	^b Department of Tea Science, Zhejiang University, 388 Yuhangtang Road, Hangzhou
13	310058, China
14	^c Faculty of Agriculture, Shizuoka University, 836 Ohya, Suruga-ku, Shizuoka 422-8529,
15	Japan
16	
17	Abstract
18	BACKGROUND: Recently the flowers of tea (Camellia sinensis) have attracted more
19	interest of researchers because they have many bioactive compounds such as catechins
20	etc. The objective of this study was to investigate occurrences of some characteristic
21	compounds in tea flowers.
22	RESULTS: A principal component analysis of metabolites using ultra performance liquid

^{*} Corresponding author. Tel: +8154-2384870; Fax: +8154-2384870; *Email address:* <u>acnwata@ipc.shizuoka.ac.jp</u> (Naoharu Watanabe).

23	chromatography-time of flight mass spectrometry suggested a different metabolite profile
24	between flowers and leaves of <i>C. sinensis</i> var. Yabukita. Four spermidine derivatives
25	have been isolated from tea flowers. One of them was determined as N^1 , N^5 ,
26	N^{10} -tri-coumaroyl spermidine based on NMR, MS, and UV data. The other three
27	spermidine derivatives were identified as feruoyl di-coumaroyl spermidine, coumaroyl
28	di-feruoyl spermidine, and tri-feruoyl spermidine, respectively, based on MS ⁿ evidences.
29	The tri-coumaroyl spermidine as major spermidine conjugate was not detected in tea leaves.
30	Furthermore, the spermidine conjugate decreases during floral development, and mainly
31	occurs in anthers.
32	CONCLUSION: We provide the evidences that spermidine-phenolic acid conjugates occur
33	in tea flowers with considerable amounts for the first time. Their occurrences in tea flowers
34	will prompt us to reconsider the ecological roles of tea flowers. From an economic point of
35	view, tea flowers might be suitable for raw materials in health-care food and
36	pharmaceutical industries.
37	
38	Keywords: anther; Camellia sinensis; conjugate; spermidine; tea flowers
39	
40	INTRODUCTION
41	Tea (Camellia sinensis) is a plant commercially grown for beverage production.
42	Beneficial health properties of tea leaf extracts and their phenolic compounds have been
43	extensively studied. ^{1, 2} Recently, flowers of tea have attracted more interest of researchers
44	because they have many bioactive compounds such as catechins with radical-scavenging
45	effects, ³⁻⁵ nitric oxide suppressing effects in LPS-induced RAW 264.7 cells, ³ and

46 anti-proliferative and apoptotic effects in human breast cancer MCF-7 cells;⁶

47 floratheasaponins with inhibitory activities on serum triglyceride elevation and the release

- 48 of β -hexosaminidase from RBL-2H3 cells,^{7,8} and polysaccharides with α -glucosidase
- 49 inhibitory and amylase inhibitory activities.⁹
- Up to date, relatively few studies have been performed on the differences in 50 extensive metabolite profile between tea leaves and flowers. The previous reports were 51 mostly focused on specific metabolite classes such as such as catechins, caffeine etc.³ 52 Recent advances in practical methodologies and affordable instrumentation to 53 metabolite analysis allow us perform a rapid and systematical characterization of 54 55 small molecule metabolites found in an organism, and it is possible to determine small differences in the metabolite composition between groups or treatments.¹⁰ The 56 57 objectives of this study are to compare the metabolite profile between tea flowers and leaves, and investigate occurrences of some characteristic compounds in tea flowers. 58 In the present study we found a different metabolite profile between tea flowers and leaves 59 by integrating the resolving power of ultra performance liquid chromatography-time of 60 61 flight mass spectrometry (UPLC-TOFMS) and multivariate data analysis. Moreover, 62 several characteristic metabolites such as spermidine-phenolic acid conjugates present in tea flowers were identified, and their distributions in floral organs were 63 investigated. Spermidine-phenolic acid conjugates are a widely distributed group of 64 plant secondary metabolites that are concentrated in the floral parts of plants.¹¹⁻¹⁸ In 65 the past few years, enormous strides have been made in understanding the diverse 66 roles played by spermidine-phenolic acid conjugates in plants, including defense 67 68 against wounding, pathogens, and insects, floral induction, flower formation, sexual

69	differentiation, tuberization, cell division, and cytomorphogenesis (Reviewed by
70	Facchini et al. ¹⁹). In addition to these diverse functions in plants, the
71	spermidine-phenolic acid conjugate, for example N^1 , N^5 , N^{10} -tri-coumaroyl spermidine,
72	was found to appreciably inhibit HIV-1 protease. ²⁰ In this study we firstly report the
73	occurrence of this class of compounds in tea flowers. Since growth of tea flower was
74	traditionally regarded as having the negative influence on the production of tea leaves,
75	little attention has been paid so far to the ecological roles of flower in tea plants. The
76	occurrences of the spermidine-phenolic acid conjugates in tea flowers will prompt us
77	to reconsider the ecological roles of tea flowers.
78	
79	MATERIALS AND METHODS
80	Sample preparation
81	The leaves (from 1 st to 4 th leaves) and flowers of <i>C. sinensis</i> var. Yabukita, which is the
82	most popular variety of tea in Japan, were obtained from tea fields at the Center for
83	Education and Research in Field Sciences, Shizuoka University (Fujieda, Shizuoka,
84	Japan) in November from 2008 to 2010. The tea plants were fertilized four times per
85	year, including N: P ₂ O ₅ : K ₂ O = 7.2: 3.6: 4.8 kg/1000 m ² in February, 5.4: 1.8: 3.0
86	kg/1000 m ² in April, 6.6: 1.2: 2.4 kg/1000 m ² in June, and 7.2: 2.4: 6.0 kg/1000 m ² in
87	September. The samples were crushed to a fine powder using a Multi-Beads Shocker
88	(2,000 rpm, 15 sec, Yasui Kikai Corporation, Japan) and stored at -80°C for analysis.
89	Analysis of endogenous metabolites by UPLC-TOFMS
90	To assess the differences in the composition of metabolites of tea flowers and leaves,

70% methanol-soluble constituents from the flowers and leaves were analyzed by

92	UPLC-TOFMS. Fifty mg (fresh weight) of finely powdered tissues were extracted with 1
93	mL of cold 70% methanol by vortexing for 1 min followed by an ultrasonic extraction on
94	ice for 10 min, afterwards filtered through 0.45 μ m membrane filter. Prior to Waters
95	ACQUITY UPLC- LCT Premier XE^{TM} analysis, the filtrate was diluted to 10 mL with
96	70% methanol. Two μ L of samples were injected onto an ACQUITY HSS T3 2.1 × 100
97	mm, 1.8 μ m column. Sample and column temperatures were maintained at 4°C and 40°C,
98	respectively. The samples were eluted using a flow rate of 0.3 mL/min applying a
99	chromatographic gradient of two mobile phases (A: 0.1% aqueous formic acid; B: 0.1%
100	formic acid in acetonitrile). The solvent B was maintained at 0% for 2 min, increased
101	linearly from 0% to 25% at 10 min, and then to 98% at 13.5 min. Afterwards 98% of
102	solvent B was maintained for 3.5 min and subsequently brought back within 0.1 min to 0%
103	of the solvent and held for another 2.9 min to allow for column equilibration.
104	An electrospray source was used. Sample cone voltage was set at 30 V and capillary
105	voltage was set at 3.0 kV. The source and desolvation temperatures were 120°C and 450°C,
106	respectively. The desolvation and nebulizer gas flow rates were 900 L/h and 50 L/h,
107	respectively. Spectra were collected in the negative ionization at a mass resolution of
108	approximately 10,000 (full width half maximum). Data were acquired over the m/z range
109	70–1,000. The raw data from the UPLC-TOFMS analysis were transformed to peak tables
110	using MarkerLynx, an application manager of MassLynx v. 4.1.
111	Isolation and purification of spermidine derivatives from tea flowers
112	The breakilized and a surdaned too florence come outer stad three times as should be all
	The tyophilized and powdered tea flowers were extracted three times each with ethanol:

114 The infusion was filtered with a 0.45 μ m Millipore filter and concentrated under reduced

pressure to give the ethanolic extract of tea flowers, which was further separated by
liquid-liquid partitioning using chloroform, ethyl acetate and *n*-butanol successively, as
described previously.⁵

The ethyl acetate-soluble fraction was subjected to a Biotage Flash40 chromatography 118 system (ODS C-18 40 mm ID×15.0 cm, column volume= 188 mL), and the compounds 119 were eluted in order of decreasing polarity with a methanol gradient [MeOH-H₂O 120 $(1:99 \rightarrow 5:95 \rightarrow 10:90 \rightarrow 20:80 \rightarrow 30:70 \rightarrow 50:50 \rightarrow 75:25, v/v) \rightarrow MeOH]$ using the double 121 122 column volumes for every gradient step. From the 16 obtained fractions, fractions 13-16 were combined and further purified by preparative HPLC using a 10 mm \times 250 mm, 5 μ m 123 particle size, UG120Å C-18 reversed-phase column (Shiseido Co. Ltd., Japan) with the 124 125 solvent A (HCOOH-H₂O, 0.1:99.9, v/v) and the solvent B (MeCN), at 293 nm and a flow rate of 4 mL/min. Elution was started under isocratic conditions of 12% of solvent B for 5 126 min, and followed by a linear increase of solvent B to 25% at 45 min, 60% at 65 min, 100% 127 at 75 min followed by an isocratic step of solvent B for 10 min. The fraction A (retention 128 129 time 55.8-57.2 min) was concentrated under vacuum and analyzed by an LCMS-2010 A 130 system (Shimadzu Cooperation, Tokyo, Japan) equipped with a 2.0 mm × 150 mm i.d., 5 µm particle size, UG120 C-18 reversed-phase column (Shiseido Co. Ltd., Japan). A total of 131 10 µL of the sample solutions was analyzed using gradient elution with the mobile phase of 132 MeCN: [HCOOH-H₂O, 0.1:99.9, v/v] (25:75, v/v) at a flow rate of 0.2 mL/min at 40°C for 133 50 min. UV-vis spectra were recorded between 200 and 600 nm for each chromatographic 134 135 peak. Optimized electrospray operating conditions were: dry gas 1.5 L/min, capillary 136 voltage 1.5 kV, dry temperature 250°C. Four peaks were identified in the Fraction A (See results and discussion, Figure 2). To further purify the four compounds, the Fraction A was 137

138	subjected to preparative HPLC using a 10 mm $\!\times$ 250 mm, 5 μm particle size, UG120Å C-18
139	reversed-phase column (Shiseido Co. Ltd., Japan) and the mobile phase of MeCN:
140	[HCOOH-H ₂ O, 0.1:99.9, v/v] (25:75, v/v) at a flow rate of 4 mL/min, and 40°C. The
141	purified compounds were identified by MS ⁿ (Analyzer, ion trap; LTQ Orbitrap Discovery,
142	Thermo Fisher Scientific) and NMR (JEOL JNM-LA 500 FT-NMR) using ¹ H, ¹³ C, COSY,
143	HSQC, and HMBC.
144	
145	RESULTS AND DISCUSSION
146	Comparison of metabolite profiles of tea flowers and leaves
147	A principal component analysis of metabolites (m/z 70-1000) using UPLC-TOFMS
148	demonstrated that significant differences exist between the metabolic profiles of leaves and
149	flowers at different stages (Figure 1). In the past few years, enormous strides have been
150	made in understanding the health properties of tea leaves and their bioactive compounds,
151	especially catechins. In contrast to tea leaves, tea flowers contain comparable amounts of
152	total catechins. ³ Moreover, other similar chemical compositions to tea leaves, for example,
153	caffeine, ³ flavonol glycosides, ⁵ sugars, ⁹ and amino acids, ²¹ etc., were also identified in tea
154	flowers. Different metabolic profiles between tea flowers and leaves in the present study
155	suggest that some characteristic compounds may occur in tea flowers.
156	Identification and occurrences of spermidine derivatives in tea flowers
157	The four spermidine derivatives (compounds 1-4) were isolated and purified from tea
158	flowers (Figure 2A). The compound 1 was determined as tri-coumaroyl spermidine based
159	on MS ² and MS ³ data (Figure 3) and NMR spectra as shown below. ¹ H NMR (500 MHz,
160	dissolved in CD ₃ OD): <i>p</i> -coumaroyl systems: δ 7.50-7.56 (m, H-7', 7"'), 7.35-7.48 (m, H-2',

161 2", 2"', 6', 6", 6", 7"), 6.87 (m, H-8"), 6.72-6.83 (m, H-3', 3", 3"', 5', 5", 5"'), 6.36-6.44 (m,

- 162 H-8', 8"'). Spermidine system: δ 3.31-3.55 (m, H₂-2, 4, 6, 9), 1.60-1.93 (m, H₂-3, 7, 8).
- 163 ¹³C NMR (125 MHz, dissolved in CD₃OD): *p*-coumaroyl systems: δ 169.2-169.4 (C-9', 9",
- 164 9""), 160.5-160.7 (C-4', 4", 4""), 144.4 (C-7"), 141.8-142.2 (C-7', 7""), 130.9 (C-2", 6"),
- 165 130.6 (C-2', 6', 2"', 6"'), 127.9 (C-1"), 127.6-127.7 (C-1', 1"'), 118.5 (C-8"'), 118.2 / 118.4
- 166 (C-8'), 116.7 / 116.8 (C-3', 3", 3", 5', 5", 5"), 114.9 (C-8"). Spermidine system: δ 47.6 / 49.0
- 167 (C-6), 45.7 /47.0 (C-4), 39.9 / 40.1 (C-9), 37.9 / 38.2 (C-2), 28.9 / 30.6 (C-3), 27.9 / 28.0
- 168 (C-8), 26.3 / 27.8 (C-7). The NMR data agree with those published in the literatures.^{11, 20}
- 169 The NMR spectra of the compound 2 were similar to those of the compound 1, except for
- 170 the presence of methoxy group (δ H 3.85-3.88 , δ C 56.4-56.6), suggest that the compound 2
- 171 contains feruoyl groups. Furthermore, based on MS² and MS³ evidences (Figure 3), the
- 172 compound 2 was determined as feruoyl di-coumaroyl spermidine. The NMR signals of the
- 173 compound 2 were overlapped. Therefore, the positions of coumaroyl and feruoyl groups
- located in N^1 , N^5 , or N^{10} in the compound 2 are not completely assigned. The compound 3
- and compound 4 were tentatively identified as coumaroyl di-feruoyl spermidine and
- tri-feruoyl spermidine, respectively, on the basis of MS² and MS³ evidences (Figure 3). UV
- 177 data of the compounds 1-4 (Figure 2B) agree with those published in the literature.²²
- 178 Tri-coumaroyl spermidine (compound 1) as one major spermidine derivative in tea
- 179 flowers decreased from 181.4 μ g/g (fresh weight) at flower buds stage to 91.7 μ g/g at
- 180 full-open flowers stage during floral development (Figure 4A), and mostly occurred in
- 181 anthers (271.6 µg/g, 82.5% contribution to 1 fully open flower), followed by filaments
- 182 (20.6 µg/g, 9.2% contribution), petals (9.1 µg/g, 6.5% contribution), and other parts
- 183 (8.2 µg/g, 1.9% contribution), successively (Figures 4B and C). Tri-coumaroyl

184	spermidine was not detected in tea leaves (Figure 4A). Several spermidine-phenolic acid
185	conjugates have been isolated and identified in the floral parts of plants, such as Corylus
186	avellana, ¹² Alnus glutinosa, Betula verrucosa, Pterocarya fraxinifolia, ¹³ Rosaceae, ¹⁴
187	Aphelandra, ¹⁵ Quercus dentate, ¹⁶ Pisum sativum, ¹⁷ Arachis hypogea, ¹¹ and Fragaria \times
188	ananassa. ¹⁸ Recently, spermidine hydroxycinnamoyl transferase, O-methyltransferases
189	AtTSM1, and two cytochrome P450 enzymes CYP98A8 and CYP98A9 have been shown
190	to be involved in the formation of the spermidine-phenolic acid conjugates. ²²⁻²⁴ Among
191	these reports, the spermidine-phenolic acid conjugates are mainly found in
192	pollen-accumulating anther part, which is consistent with the distribution in flowers of C .
193	sinensis (Figures 4B and 4C). Not all flower organs are equally employed in metabolite
194	production, and spatial differences within a flower are quite common.
195	Spatially-restricted production of secondary metabolite classes and specialized
196	derivatives in flowers may take part in implementing the unique program of
197	individual organs in the floral life cycle. ¹⁸ The accumulation of these compounds in
198	anthers may be responsible for the pollen formation. ¹⁹
199	
200	CONCLUSION
201	This study shows the different metabolite profiles between tea leaves and flowers.
202	Furthermore, four spermidine-phenolic acid conjugates were isolated and identified in
203	tea flowers for the first time. The spermidine-phenolic acid conjugates occur with
204	considerable amounts in tea flowers and highly accumulate in anthers. The
205	information will help us to discover unknown ecological function of flowers in tea
206	plants and will also contribute to the future application of tea flowers as raw materials

207	in health-care	food and	pharmaceutical	industries.

208		
209		ACKNOWLEDGEMENTS
210	W	e acknowledge the support of the Japanese Society for the Promotion of Science (JSPS
211	ID	NO. P10101). We are also grateful to Prof. T. Asami at Department of Applied
212	Bi	ological Chemistry, The University of Tokyo for the valuable discussions on chemical
213	str	ructures and bioactivities of spermidine conjugates.
214		
215		REFERENCES
216	1	Bushman JL, Green tea and cancer in humans: A review of the literature. Nutr Cancer
217		31 : 151-159 (1998).
218	2	Trevisanato SI, Tea and health. Nutr Rev 58: 1-10 (2000).
219	3	Lin YS, Wu SS and Lin JK, Determination of tea polyphenols and caffeine in tea
220		flowers (Camellia sinensis) and their hydroxyl radical scavenging and nitric oxide
221		suppressing effects. J Agric Food Chem 51: 975-978 (2003).
222	4	Yang ZY, Xu Y, Jie GL, He PM and Tu YY, Study on the antioxidant activity of tea
223		flowers (Camellia sinensis). Asia Pac J Clin Nutr 16 (Suppl. 1): 148-152 (2007).
224	5	Yang ZY, Tu YY, Baldermann S, Dong F, Xu Y and Watanabe N, Isolation and
225		identification of compounds from the ethanolic extract of flowers of the tea (Camellia
226		sinensis) plant and their contribution to the antioxidant capacity. LWT-Food Sci Technol
227		42 : 1439-1443 (2009).
228	6	Way TD, Lin HY, Hua KT, Lee JC, Li WH, Lee MR, Shuang CH and Lin JK,
229		Beneficial effects of different tea flowers against human breast cancer MCF-7 cells.

230 Food Chem 114: 1231-1236 (2009).

231	7	Yoshikawa M, Morikawa T, Yamamoto K, Kato Y, Nagatomo A and Matsuda H,
232		Floratheasaponins A-C, acylated oleanane-type triterpene oligoglycosides with
233		anti-hyperlipidemic activities from flowers of the tea plant (Camellia sinensis). J Nat
234		<i>Prod</i> 68 : 1360-1365 (2005).
235	8	Yoshikawa M, Nakamura S, Kato Y, Matsuhira K and Matsuda H, Medicinal flowers.
236		XIV. New acylated oleanane-type triterpene oligoglycosides with antiallergic activity
237		from flower buds of Chinese tea plant (Camellia sinensis). Chem Pharm Bull 55:
238		598-605 (2007).
239	9	Wang Y, Yang Z and Wei X, Sugar compositions, α -glucosidase inhibitory and amylase
240		inhibitory activities of polysaccharides from leaves and flowers of Camellia sinensis
241		obtained by different extraction methods. Int J Biol Macromol 47: 534-539 (2010).
242	10	Chen C, Gonzalez FJ and Idle JR, LC-MS-based metabolomics in drug metabolism.
243		Drug Metab Rev 39 : 581-597 (2007).
244	11	Sobolev VS, Sy A A and Gloer JB, Spermidine and flavonoid conjugates from peanut
245		(Arachis hypogaea) flowers. J Agric Food Chem 56: 2960-2969 (2008).
246	12	Meurer B, Wray V, Grotjahn L, Wiermann R and Strack D, Hydroxycinnamic acid
247		spermidine amides from pollen of Corylus avellana L. Phytochemistry 25: 433-435
248		(1986).
249	13	Meurer B, Wray V, Wiermann R and Strack D, Hydroxycinnamic acid-spermidine
250		amides from pollen of Alnus glutinosa, Betula verrucosa and Pterocarya fraxinifolia.
251		Phytochemistry 27: 839-843 (1988).
252	14	Strack D, Eilert U, Wray V, Wolff J and Jaggy H, Tricoumaroylspermidine in flowers of

- 253 *Rosaceae*. *Phytochemistry* **29**: 2893-2896 (1990).
- 254 15 Werner C, Hu W, Lorenzi-Riatsch A and Hesse M, Di-coumaroylspermidines and
- tri-coumaroylspermidines in anthers of different species of the genus *Aphelandra*.
- 256 *Phytochemistry* **40**: 461–465 (1995).
- 257 16 Nimtz M, Bokern M and Meurer-Grimes B, Minor hydroxycinnamic acid spermidines
- from pollen of *Quercus dentate*. *Phytochemistry* **43**: 487-489 (1996).
- 259 17 Perez-Amador MA, Carbonell J, Navarro JL, Moritz T, Beale MH, Lewis MJ and
- 260 Hedden P, N^4 -Hexanoylspermidine, a new polyamine-related compound that
- accumulates during ovary and petal senescence in pea. *Plant Physiol* **110**: 1177-1186
- 262 (1996).
- 263 18 Hanhineva K, Rogachev I, Kokko H, Mintz-Oron S, Venger I, Kärenlampi S and
- Aharoni A, Non-targeted analysis of spatial metabolite composition in strawberry

265 (*Fragaria* × *ananassa*) flowers. *Phytochemistry* **69**: 2463-2481 (2008).

- 266 19 Facchini PJ, Hagel J and Zulak KG, Hydroxycinnamic acid amide metabolism:
- 267 physiology and biochemistry. *Can J Bot* **80**: 577-589 (2002).
- 268 20 Ma C, Nakamura N and Hattori M, Inhibitory effects on HIV-1 protease of
- tri-p-coumaroylspermidine from *Artemisia caruifolia* and related amides. *Chem Pharm Bull* 49: 915-917 (2001).
- 271 21 Wang L, Xu R, Hu B, Li W, Sun Y, Tu Y and Zeng X, Analysis of free amino acids in
- 272 Chinese teas and flower of tea plant by high performance liquid chromatography
- combined with solid-phase extraction. *Food Chem* **123**:1259-1266 (2010).
- 274 22 Matsuno M, Compagnon V, Schoch GA, Schmitt M, Debayle D, Bassard JE, Pollet B,
- Hehn A, Heintz D, Ullmann P, Lapierre C, Bernier F, Ehlting J and Werck-Reichhart D,

276		Evolution of a novel phenolic pathway for pollen development. <i>Science</i> 325 : 1688-1692
277		(2009).
278	23	Fellenberg C, Milkowski C, Hause B, Lange PR, Böttcher C, Schmidt J and Vogt T,
279		Tapetum-specific location of a cation-dependent O-methyltransferase in Arabidopsis
280		thaliana. Plant J 56: 132-145 (2008).
281	24	Grienenberger E, Besseau S, Geoffroy P, Debayle D, Heintz D, Lapierre C, Pollet B,
282		Heitz T and Legrand M, A BAHD acyltransferase is expressed in the tapetum of
283		Arabidopsis anthers and is involved in the synthesis of hydroxycinnamoyl spermidines.
284		<i>Plant J</i> 58: 246-259 (2009).
285		
286		
287		
288		
289		
290		
291		
292		
293		
294		
295		
296		
297	Fig	gure Legends
298		

299	Figure 1 Principal component analysis of metabolites ([M-H] ⁻ m/z 70-1,000) of tea leaves
300	and flowers at different stages.
301	
302	Flower development was divided into 3 stages: at stage 1 the flower buds are closed, at
303	stage 2 the flower is half open, and at stage 3 the flower is fully open. The principal
304	component analysis was performed using combination of m/z and retention time in the
305	spectra by MarkerLynx, an application manager of MassLynx v. 4.1.
306	
307	
308	Figure 2 Chromatogram (A), and UV spectrums (B) of the four compounds isolated from
309	Fraction A (See Materials and methods).
310	
311	
312	Figure 3 Chemical structures of spermidine derivatives isolated from tea flowers and their
313	identifications by MS ⁿ .
314	The compounds 1-4 are shown in Figure 2 . The positions of coumaroyl and feruoyl groups
315	located in N^1 , N^5 , or N^{10} in the compounds 2-3 are not completely assigned.
316	
317	
318	Figure 4 Changes in tri-coumaroyl spermidine during floral developments and their
319	distributions in floral organs of C. sinensis flowers.
320	The data are expressed as Mean \pm S.D. (n=3). (A) N.D., not detected. (B) The "other part"
321	is a mixture of carpels, receptacles, sepals, and pedicels. (C) The biomass contributions of

322	petals, filaments, anthers, and other parts to 1 flower are 42%, 26.4%, 18%, and 13.4%,
323	respectively. The relative ratio (%) was calculated based on the contribution of each floral
324	organ to 1 fully open flower.
325	
326	
327	
328	
329	
330	
331	
332	
333	
334	
335	
336	
337	
338	
339	
340	
341	
342	

	Compound HN^{2} , 4 $O=C^{9'}$, 5 $8CH$, $7CH$, $7CH$, $7CH$, 3 , 5^{*} , 6^{*} , 5^{*} , 6^{*} , 5^{*} , 6^{*} , 5^{*} , 5^{*} , 6^{*} , 6^{*} , 5^{*} , 5^{*} , 6^{*} , 6^{*} , 5^{*} , 5^{*} , 6^{*} ,	$ \begin{array}{c} 1 \\ 5 \\ 9^{\circ}C = 0 \\ 8^{\circ}CH \\ 7^{\circ}CH \\ 1^{\circ}CH \\ 1^{\circ}CH \\ 4^{\circ} \\ 0H \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0$	$R_{HN} \xrightarrow{N}_{R} NH_{R}$ Spermidine backbone $R = one of the phenolic acid moieties:$ Sperm $O + Coumaroyl$ $O + Coumaroyl$ Sperm $O + Coumaroyl$ $O + Coumar$	Compound 2: R×3= coumaroyl ×2+feruoyl×1 Compound 3: R×3= coumaroyl ×1+feruoyl×2 Compound 4: R×3= feruoyl×3
	Compound	MS ²		
	Compound 1 342, 436 [M-H-coum], 462 342/436/462→145 [M-H-coum-coum-sperm], 462→223, 342→2			462→223, 342→256, 436/462→273,
	[M-H] ⁻ 582 Compound 2 [M-H] ⁻ 612	342, 372, 436 [M-H-Fer] ⁻ , 462, 466 [M-H-coum] ⁻ , 476, 492	342/462→299, 436/462→316, 436/462→342, 462→319 466→135, 462/466/476→145 [M-H-coum-fer-sperm] ⁻ , 492→175 [M-H-coum-coum- sperm] ⁻ , 492→299, 462/466→316, 476→330, 462/492→342, 466→346, 492→372, 462→419, 476→433, 492→449 466→135, 492→145 [M-H-fer-fer-sperm] ⁻ , 492/506/522→175 [M-H-coum-fer-sperm] ⁻ , 466/492→316, 492/522→329, 492→342, 466/522→346, 492/522→357, 492/522→372, 506→448, 492→449, 522→479, 506→463, 506→491	
	Compound 3 [M-H] ⁻ 642	372, 466 [M-H-fer] ⁻ , 492, 496 [M-H-coum] ⁻ , 506, 522		
378	Compound 4 [M-H] ⁻ 672	372, 496 [M-H-fer] ⁻ , 522, 536	372/496/522/536→175 [M-H-fer-fer-sperm], 372/496/522→346, 372/522→357, 522→372 522→507, 536→521	372→314, 496→320, 372→329, 496→331, , 536→478, 522→479, 536→493,
379				
200				
380				
381				
382				
383				
384				
385				
386				
387				
388				
389				
390				
391				
392				
393	Figure 3 Z	Ziyin YANG		

Figure 4 Ziyin YANG