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Endoplasmic reticulum (ER) is an important organelle for the 
synthesis, correct folding, post-translation modification and 
transport of nascent proteins to different destinies.1,2 ER stress is 
caused by disturbances in the structure and function of the ER 
with the accumulation of misfolded proteins and alterations in 
calcium homeostasis. In case of prolonged or aggravated ER 
stress, cellular signals leading to cell death are activated3. ER 
stress has been reported to cause not only neurodegenerative 
diseases3-5 but also some other diseases, such as diabetes, 
atherosclerosis, or heart and liver disease.6  

Therefore, protective activity against ER stress is possibly an 
important target for addressing these diseases, and the demand 
for new lead compounds prompted us to screen the protective 
activity of mushroom extracts. During the screening for ER stress 
protecting effects of the extracts of various mushrooms, we 
previously reported the protective compounds from the 
mushrooms Hericium erinaceus,7-9 Termitomyces titanicus,10 and 
Leccinum extremiorientale.11 Moreover, -lactones and  
phenylpentanols having protective activity against toxicity of 
tunicamycin (TM) or thapsigargin (TG) from the mushroom 
Mycoleptodonoides aitchisonii have been reported.12,13 In the 
course of our continuing search for ER stress protecting 

compounds from the mushroom M. aitchisonii, we found active 
compounds. We report here the isolation and structure 
determination of novel compounds (1 and 2), together with two 
known ones (3 and 4). 

 

The fresh fruiting bodies of M. aitchisonii were extracted with 
EtOH and then with acetone. After the solutions had been 
combined and concentrated under reduced pressure, the 
concentrate was partitioned between CH2Cl2 and H2O and then 
between EtOAc and H2O. Compounds 1, 3, and 4 were obtained 
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Two novel compounds 1 and 2, along with two known ones (3 and 4) were isolated from the 
edible mushroom Mycoleptodonoides aitchisonii. The structures of 1−4 were determined and 
identified by interpreting their spectroscopic data. All the compounds showed protective activity
against endoplasmic reticulum stress-dependent cell death. 
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from the CH2Cl2-soluble part and compound 2 was purified 

from the EtOAc-soluble part.14 

Compound 1 was isolated as a colorless oil. The IR spectrum 
showed absorption bands at 2929 cm-1 and 1735 cm-1.15 Its 
molecular formula was determined as C13H26O4 by HRESIMS 
(m/z 269.1730 [M+Na]+; calcd. for C13H26NaO4, 269.1729), 
indicating the presence of one degree of unsaturation in the 
molecule. The complete assignment of all the protons and 
carbons was accomplished by HMQC, COSY, and HMBC 
experiments as shown in Table 1 and Figure 1. The DEPT 
experiment and the molecular formula indicated the presence of 
three methyls, eight methylenes, a methine, and a quaternary 
carbon. The ethoxycarbonylpropyl moiety was elucidated by the 
COSY correlations (bold line in Fig. 1) and the HMBC 
correlations (H-1/C-2, H-1/C-1, H-2/C-1, H-2/C-1, H-2/C-3, 
H-3/C-1, H-3/C-2) and the chemical shift of C-1 (C 173.8). The 
dimethoxypropanyl group was suggested by the NMR signals [H 
3.29 (6H, s) and C 52.6], the HMBC correlations [H-7/C-8, H-
7/C-9, H-8/C-7, H-8/C-9, H-9/C-7, H-9/C-8, H-9/MeO-, MeO-
/C-9], and the COSY correlations (H-7/H-8, H-8/H-9)(Fig. 1). 
The connection of the ethoxycarbonylpropyl, the 
dimethoxypropanyl and the other part was suggested by the 
molecular formula in 1. All the data allowed us to conclude that 1 
was ethyl 9,9-dimethoxynonanoate.  

 

 

 

 Table 1. 1H and 13C NMR data for 1 and 2  

 

Compound 2 was isolated as a colorless crystal showing a 
specific rotation of []D

28
 +15 (c 0.25, CHCl3) with a melting 

point of 58-60°C. The IR spectrum showed absorption bands at 
3360 cm-1, 2916 cm-1, and 1454 cm-1. Its molecular formula was 
determined as C11H14O2 by HRESIMS (m/z 201.0921 [M+Na]+; 
calcd. for C11H14NaO2, 201.0892), indicating the presence of five 
degrees of unsaturation in the molecule. The complete 
assignment of all the protons and carbons was accomplished by 

DEPT, HMQC, COSY, and HMBC experiments as shown in 
Table 1 and Figure 1. The DEPT experiment and the molecular 
formula indicated the presence of three methylenes, seven 
methines, and a quaternary carbon. The presence of the benzyl 
group was suggested by the COSY correlations (bold line in Fig. 
1) and the HMBC correlations (H-1/C-1, H-1/C-2, H-2/C-1, 
H-2/C-1, H-2/C-3, H-2/C-4, H-3/C-2, H-3/C-4, H-
4/C-1, H-4/C-2, H-4/C-3). The tetrahydrofuran moiety 
was elucidated by the COSY correlations (H-2/H-3, H-3/H-4, H-
4/H-5) and the HMBC correlations (H-2/C-3, H-2/C-4, H-3/C-2, 
H-3/C-4, H-3/C-5, H-4/C-2, H-4/C-3, H-4/C-5, H-5/C-2, H-5/C-
4) and the chemical shifts of C-2 (C 77.4) and C-5 (C 60.4). The 
connection between the benzyl and tetrahydrofuran moieties was 
determined by the HMBC correlations (H-1/C-2, H-1/C-3, H-
2/C-1, H-2/C-1, H-3/C-1). The presence of the hydroxy group 
at C-3 was suggested by the molecular formula and the chemical 
shift (H 3.60 and C 73.2). All the data allowed us to conclude 
that 2 was 2-benzyltetrahydrofuran-3-ol. Although NOESY data 
of 2 did not give significant information about its stereochemistry, 
the NMR data of 2 were completely different from those of (2R*, 
3R*)-2-benzyltetrahydrofuran-3-ol that has been reported as a 
synthetic compound.16,17 Therefore, relative configuration of 2 
was determined to be (2S*, 3R*). 

By comparison of the NMR data and mass spectra of 
compounds 3 and 4 with the previous reported papers, they were 
identified as shown in Figure 1. Compound 3 has been reported 
as an intermediate in the synthesis of cyclopentapyranone, but 
this is the first report of isolation of 3 from a natural source.18 Its 
stereochemistry remains undetermined. Compound 4 has been 
isolated as an inducer of NAD(P)H:quinone oxidoreductase 1 
from this mushroom.19 

Compounds 1−4 were subjected to the protective activity 
assay against ER stress-dependent cell death caused by TM or 
TG.13 ER stress was induced by addition of TM or TG into the 
culture medium of Neuro2a cells in the presence or absence of 
each compound. TM is an inhibitor of N-linked glycosylation and 
the formation of N-glycosidic protein-carbohydrate linkages.20 
TG, an inhibitor of sarcoplasmic/endoplasmic reticulum Ca2+-

 1 (in CDCl3)  2 (in CD3OD) 

position H  
(mult., J in Hz) 

C position  H 
(mult., J in Hz) 

C 

1  173.8 1  
2 2.26 (t, 7.4) 34.4 2 3.64 (m) 77.4
3 1.58 (m) 24.9 3 3.60 (m) 73.2
4, 5, 6 1.29 (m) 29.0, 29.2 4 1.66 (m), 1.92 (m) 36.1
  29.3 5 3.71 (m), 3.77 (m) 60.4
7 1.29 (m) 24.5 1 2.61 (dd, 14.0, 8.9) 40.4
8 1.55 (m) 32.5  2.97 (dd, 14.0, 3.4)
9 4.32 (t, 5.7) 104.6 1  140.9
MeO-9 3.29 (s) 52.6 2, 6 7.24 (m) 130.5
1 4.10 (q,7.3) 60.1 3, 5 7.24 (m) 129.2
2 1.23 (t, 7.3) 14.2 4 7.16 (m) 127.0

Figure 1. COSY and HMBC correlations of 1 and 2. 

Figure 2. Protective activity of 1−4 against ER stress-dependent cell 
death. Neuro2a cells were incubated with various concentrations of 
compounds in the absence or presence of 10 nM thapsigargin (TG) for 
24 h. The cell viabilities were analyzed by MTT assay, and the values 
were represented as the mean ± SE of the relative percentage of 
surviving cells compared with the untreated cells (n=10−12). (*) P<0.01, 
Tukey-Kramer multiple comparisons tests. 
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ATPase, also induces ER stress by disrupting the homeostatic 
balance of the Ca2+ concentration in the ER.21 All the compounds 
did not show the protective activity against TM-toxicity (data not 
shown). On the other hand, in the assay using TG, all the 
compounds showed the protective activity at more than 40  
(Fig. 2). 
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