
Mechanism of self-organization in point vortex
system

言語: en

出版者: IOP Publishing

公開日: 2015-10-21

キーワード (Ja): 

キーワード (En): 

作成者: Yatsuyanagi, Yuichi, Hatori, Tadatsugu

メールアドレス: 

所属: 

メタデータ

http://hdl.handle.net/10297/9166URL



Mechanism of self-organization in point vortex

system

Yuichi Yatsuyanagi1‡ and Tadatsugu Hatori2

1Faculty of Education, Shizuoka University, Suruga-ku, Shizuoka 422-8529, JAPAN
2National Institute for Fusion Science, Toki, Gifu 509-5292, JAPAN

Abstract. A mechanism of the self-organization in an unbounded two-dimensional

(2D) point vortex system is discussed. A kinetic equation for the system with positive

and negative vortices is derived using the Klimontovich formalism. Similar to the

Fokker-Planck collision term, the obtained collision term consists of a diffusion term

and a drift term. It is revealed that the mechanism for the self-organization in the 2D

point vortex system at negative absolute temperature is mainly provided by the drift

term. Positive and negative vortices are driven toward opposite directions respectively

by the drift term. As a result, well-known, two isolated clumps with positive and

negative vortices, respectively, are formed as an equilibrium distribution. Regardless

of the number of species of the vortices, either single- or double-sign, it is found that the

collision term has following physically good properties: (i) When the system reaches

a quasi-stationary state near the thermal equilibrium state with negative absolute

temperature, the sign of dω/dψ is expected to be positive, where ω is the vorticity

and ψ is the stream function. In this case, the diffusion term decreases the mean field

energy, while the drift term increases it. As a whole, the total mean field energy is

conserved. (ii) Similarly, the diffusion term increases the Boltzmann entropy, while the

drift term decreases it. As a whole, the total entropy production rate is positive or zero

(H theorem), which ensures that the system relaxes to the global thermal equilibrium

state characterized by the zero entropy production.
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1. Introduction

In this paper, we propose a general mechanism of the self-organization for the two-

dimensional (2D) point vortex system composed of double-sign vortices through a newly

obtained kinetic equation. The kinetic equation clearly elucidates the mechanism of

the self-organization, in other words, a condensation of the same-sign vortices and a

separation of the different-sign vortices.

At first, let us briefly introduce a hierarchy of the plasma kinetic equations. There

are several equations with different scales. The most microscopic equation is the

Klimontovich equation which describes a time evolution of a microscopic phase density

f̂α(r,v, t) for the α-th plasma species with the charge qα and the mass mα in a six-

dimensional phase space

∂f̂α(r,v, t)

∂t
+v·∇f̂α(r,v, t)+

qα
mα

(Ê(r, t)+v×B̂(r, t))·∂f̂α(r,v, t)
∂v

= 0(1)

where Ê(r, t) and B̂(r, t) are the microscopic electric and magnetic fields. Equation

(1) has a formal discretized solution

f̂α(r,v, t) =
Nα∑
i

δ(r − rα,i(t))δ(v − vα,i(t)) (2)

where the position vector and the velocity of the i-th particle of the α-th component

are given by rα,i and vα,i, respectively. Number of particles of the α-th component is

given by Nα.

It is difficult to make direct use of the microscopic equation (1) because of its

complexity. We shall therefore proceed to the ensemble-average. It is assumed that

the microscopic phase density f̂α(r,v, t) is composed of a macroscopic phase density

fα(r,v, t) and a fluctuation δfα(r,v, t)

f̂α(r,v, t) = fα(r,v, t) + δfα(r,v, t), (3)

fα(r,v, t) ≡ ⟨f̂α(r,v, t)⟩ (4)

where the operator ⟨·⟩ means the ensemble average. In the same manner, the other

physical quantities are rewritten into the averaged value and the fluctuation. Inserting

the above expressions into the microscopic equation (1) and averaging the equation, we

obtain the following macroscopic equation with a collisional effect in the right hand side:

∂fα
∂t

+v ·∇fα+
qα
mα

(E+v×B) · ∂fα
∂v

=
qα
mα

⟨
(δE + v × δB) · ∂δfα

∂v

⟩
.(5)

This equation describes a time evolution of a system in terms of the continuous

probability density function fα instead of the discretized microscopic phase density

f̂α. Expressing the collision term in a form of the perturbation expansion and gathering

terms of the appropriate order, the Fokker-Planck type equation for a plasma is obtained

∂fα
∂t

+ v · ∇fα +
qα
mα

(E + v ×B) · ∂fα
∂t

=
∂

∂v
·
(
D · ∂fα

∂v
+Afα

)
(6)



3

where D is a diffusion tensor and A is a friction. The above procedure is called

the Klimontovich formalism (Klimontovich 1967). In plasmas, long-range Coulomb

interactions rather than collisions govern a whole dynamics of a system. For these

systems, the Vlasov equation is appropriate, which is obtained by dropping the collision

term in (6):

∂fα
∂t

+ v · ∇fα +
qα
mα

(E + v ×B) · ∂fα
∂t

= 0. (7)

Namely, (7) is a collisionless equation by approximation.

We have noticed that the same hierarchy exist in the 2D Euler equation. The point

vortex solution is a counterpart of (2) and we assume that this solution is a microscopic

one. Therefore, we regard the 2D Euler equation which has the point vortex solution as

a microscopic equation. Applying the Klimontovich formalism to the microscopic Euler

equation, we will obtain a corresponding macroscopic equation to (6) with a collisional

effect. By dropping the collision term from the obtained equation, we will obtain the

inviscid 2D Euler equation in the usual sense.

The 2D point vortex system has been successfully applied to understand the

various phenomena including 2D turbulence (Kida 1985, Eyink & Sreenivasan 2006,

Tabeling 2002, Kraichnan & Montgomery 1980), neutral (Taylor & McNamara 1971)

and nonneutral (Dubin & Jin 2001, Yatsuyanagi et al. 2003) plasmas. These phenomena

share a common keyword, “self-organization”. In the context of the self-organization,

possibility of the negative temperature state in the 2D point vortex system was first

pointed out by Onsager (1949). The concept of the negative temperature state is

convenient to explain how a large scale structure, such as Jupiter’s Great Red Spot

and typhoons, is formed before stored energy is exhausted by a dissipative process. If

the temperature is negative, no spatially homogeneous thermal equilibrium distribution

exists. Such states have been discussed in several ways. Joyce & Montgomery (1973)

derived the sinh-Poisson equation which determines the thermal equilibrium distribution

of double-sign point vortices. Kida (1975) discussed the axisymmetric equilibrium

distribution of a single- and double-sign vortices bounded in a circular domain using

the well-known maximizing entropy techniquie.

To understand the relaxation process toward such thermal equilibrium states,

it is necessary to develop a kinetic theory. A kinetic equation with a collisional

effect describes how a system relaxes to an equilibrium state. Kinetic theory of the

point vortex system has attracted a lot of attention. A general kinetic equation

for the point vortex system has been obtained by Chavanis with several methods

including projection operator, the BBGKY hierarchy and the Klimontovich formalism

(Chavanis 2001, Chavanis 2008). The kinetic equations have a Fokker-Planck type

collision term that is composed of a diffusion term and a drift term. The drift term was

first evidenced in Robert & Sommeria (1992) and Chavanis (1998). A kinetic theory

for multi-species point vortex system was discussed by Dubin & O’Neil (1988) and

Dubin (2003) in the context of magnetized plasmas with the Klimontovich formalism.

Chavanis & Lemou (2007) discussed the axisymmetric case with the Fokker-Planck type
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collision term. The result has an issue that a relaxation process stops before the system

reaches a Boltzmann-type thermal equilibrium state, if a profile of an angular velocity

is a monotonic decay function.

In the previous paper (Yatsuyanagi et al. 2015), we have derived a kinetic equation

having a Fokker-Planck type collision term for a single-species point vortex system with

a weak mean flow. We have paid a special attention to treat a weak mean flow case

correctly, which is a complementary case to many works by Chavanis (1998), Chavanis

(2001), Chavanis (2008), Dubin & O’Neil (1988) and Dubin (2003). The phrase “weak

mean flow” means that the number of the point vortices N has a lower and an upper

limits,

1 < π

(
R

L

)2

< N <
π

16

(
R

L

)4

(8)

where R is a characteristic system size and L is a characteristic microscopic size. See

Appendix in Yatsuyanagi et al. (2015) for detail and we will present a refined estimation

in section 5.2. With this limit, the approximation that a mean trajectory is linear in

the microscopic time scale is validated. The obtained collision term has the Fokker-

Planck form, namely, it is composed of the diffusion term and the drift term. It was

revealed that the diffusion term dissipate the mean field energy, while the drift term

increases it. As a whole, the total men field energy is conserved. In other words, the

drift term accumulates the vortices in the same place, while the diffusion term disperses

the accumulated vortices. In addition, the collision term exhibits several physically

important properties: (a) it includes a nonlocal effect; (b) it satisfies the H theorem;

(c) its effect vanishes in the thermal equilibrium state. This means that in contrast

to Chavanis & Lemou (2007), the kinetic equation ensures that a system relaxes to

a Boltzmann thermal equilibrium state even if the profile is a monotonically-decaying

symmetric one.

The most remarkable feature of the self-organization in a 2D system is a large-scale

vortex formation with the same-sign vorticity, which is expected to be connected with

the inverse-cascade in the 2D turbulence. In such systems, it is quite common that

positive and negative vortices coexist. However, the above-mentioned single-species

model cannot handle a system with positive and negative vortices. Thus, to understand

the self-organization process in a system in which vortices with the clockwise direction

and with the counterclockwise direction coexist, we need to extend the previous single-

species model to a double-species model. So, in this paper, we present a new model for

a double-species point vortex system with a weak mean flow.

In a single-species point vortex system, a remarkable feature of the self-organization

is a condensation of the same-sign vortices, although no attractive forces act between

them. The previous single-species model can describe the condensation of the single-

sign vortices correctly. In a double-species point vortex system, an additional remarkable

feature of the self-organization appears. That is a “charge-separation” of positive and

negative vortices. Namely, positive vortices isolate themselves from negative vortices

and are condensed into a clump which is exclusively composed of positive vortices,
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and vice versa. We emphasize that a new finding in the double-species model is that

the model can explain the feature of charge-separation brought by the drift term in

addition to the clumping feature which is also provided by the drift term regardless of

the single- or double-species system. Thus, the current model bears discussions for the

2D turbulence as the important features of the 2D turbulence, the condensation and

the charge-separation, are incorporated in it. We will also demonstrate the obtained

collision term has physically important properties similar to the single-species model.

The organization of this paper is as follows. In section 2, the point vortex system

and a kinetic equation are briefly introduced. We demonstrate explicit formulae for the

diffusion term and the drift term. In section 3, physical properties of the collision term

are examined. The important role of the drift term in the 2D self-organization with

negative absolute temperature will be discussed. In section 4, we present a numerical

result of the self-organization of the point vortices. Finally in sections 4 and 5, we give

a discussion and a conclusion.

2. Kinetic equation for 2D point vortex system

Let us consider a 2D point vortex system consisting of N+ positive and N− negative

vortices (Newton 2001),

ω̂(r, t) ≡ ω̂+(r, t) + ω̂−(r, t), (9)

ω̂+(r, t) =

N+∑
i=1

Ωδ(r − ri(t)), (10)

ω̂−(r, t) = −
N++N−∑
i=N++1

Ωδ(r − ri(t)), (11)

where r = (x, y) is the position vector on x− y plane, ω̂(r, t) is the z-component of the

vorticity, and δ(r) is the Dirac delta function in two dimensions. The values of N+ and

N− are not necessarily the same. The circulation of each point vortex is given by either

Ω or −Ω where Ω is a positive constant. Magnitudes of N+Ω and N−Ω are finite. The

position vector of the i-th point vortex is given by ri = ri(t). The discretized vorticities

(10) and (11) are formal solutions of the 2D Euler equations (12) and (13)

∂

∂t
ω̂+(r, t) +∇ · (û(r, t)ω̂+(r, t)) = 0, (12)

∂

∂t
ω̂−(r, t) +∇ · (û(r, t)ω̂−(r, t)) = 0 (13)

where û(r, t) is the velocity field which is determined by the stream function ψ̂(r, t):

û(r, t) = − ẑ ×∇ψ̂, (14)

ψ̂(r, t) =

∫
dr′G(r − r′)ω̂(r′, t)

=
∑
i

ΩiG(r − ri), (15)
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G(r) = − 1

2π
ln |r|. (16)

Here, ẑ is the unit vector in the z-direction, and G(r) is the 2D Green function for the

Laplacian operator with an infinite domain. From now on, for brevity, we shall omit the

dependences on t and r and denote the two equations for the positive and the negative

vortices into the single formula with double-sign, if there is no ambiguity. For example

(12) and (13) are combined into the following form:

∂

∂t
ω̂± +∇ · (ûω̂±) = 0. (17)

As is mentioned in section 1, we regard (17) as the microscopic equations

because they have the discretized point vortex solutions (10) and (11). Applying the

Klimontovich formalism to (17) (Klimontovich 1967), we obtain an intermediate result

which corresponds to (5)

∂

∂t
ω± +∇ · (uω±) = −∇ · ⟨δuδω±⟩ (18)

where the microscopic vorticity and the microscopic velocity field are defined by

ω̂± = ⟨ω̂±⟩+ δω± = ω± + δω±, (19)

û = ⟨û⟩+ δu = u+ δu. (20)

The term ⟨δuδω±⟩ is a diffusion flux and will be denoted by Γ±

Γ± ≡ ⟨δuδω±⟩

= −
∫
dr′F (r − r′)⟨δω′δω±⟩, (21)

F (r) = ẑ ×∇G(r), (22)

δu = −
∫
dr′F (r − r′)δω′. (23)

We note δω′ for δω(r′, t). Similarly, we note ω′ for ω(r′, t).

To evaluate the diffusion fluxes Γ± explicitly, we introduce a small parameter ϵ.

Orders are given by:

ω± ≈ ∇2ψ ≈ O(ϵ0), u ≈ ∇ψ ≈ O(ϵ0), ∇u ≈ ∇2ψ ≈ O(ϵ0),

∇ω± ≈ O(ϵ1/2), δω± ≈ O(ϵ1/2), δu ≈ O(ϵ1/2),

∂u

∂t
≈ O(ϵ1/2),

∂ω±

∂t
≈ O(ϵ1/2), ∇∇u ≈ O(ϵ1/2),

Γ± ≈ O(ϵ). (24)

The expansion parameter ϵ is similar to the one introduced by Chavanis in Chavanis

(2001), Chavanis (2008), Chavanis (2012) and the references therein. In addition, we

assume that the gradient of the vorticity profile is weak. Magnitude of Ω scales as either

1/N+ or 1/N− and there is an upper limit of N±. These assumptions are due to the

situation of the weak mean flow and are necessary for the validity that a mean trajectory

is linear (A.2). We will discuss the limitation on the number of vortices in section 5.2.

With these scalings, the left hand side of (18) is O(ϵ1/2), while the right hand side is
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O(ϵ3/2). Expressing Γ± in the form of the perturbation expansion and gathering the

terms of the appropriate order, an analytical formula for the diffusion fluxes will be

obtained.

Although the detailed calculation process is not the same as the single-species case

presented in Yatsuyanagi et al. (2015), there appears many similar techniques in the

double species case. Thus, the detailed process for deriving an explicit formula of the

diffusion fluxes Γ± is given in appendix.

The final result is as follows. As the obtained Γ± contain oscillatory terms, we

perform a space-average for Γ± to reveal the characteristics of the collision term. The

space-averaged diffusion flux Γs ≡ ⟨Γ⟩s for the kinetic equation

∂ω

∂t
+∇ · (uω) = −∇ · Γs(r), (25)

with

ω = ω+ + ω− (26)

is given by

Γs(r) = Γs+(r) + Γs−(r)

= −K

∫
dr′ (u− u′)(u− u′) · ∇′ω′

|u− u′|3

·
[
(ω′

+ − ω′
−)∇ω − (ω+ − ω−)∇′ω′] , (27)

Γs±(r) ≡ − Ds · ∇ω± ∓ Vsω±, (28)

Ds = K

∫
dr′ (u− u′)(u− u′)(ω′

+ − ω′
−)

|u− u′|3
, (29)

Vs = K

∫
dr′ (u− u′)(u− u′) · ∇′ω′

|u− u′|3
, (30)

K =
Ω

(2π)3

(π
L

)2 1

kmin

, (31)

where K is a constant depending on Ω, a system size R and a coarse-graining scale

L. Parameter kmin is introduced to regularize a singularity, and is determined by the

largest wave length that does not exceed the system size. It is worth stressing that

the term Vsω+ has the opposite sign to the term Vsω−. It provides a mechanism for

the “charge separation” which is usually seen in the equilibrium distribution for systems

with positive and negative vortices (Joyce & Montgomery 1973, Yatsuyanagi et al. 2005).

3. Physical properties of the diffusion flux

In this section, we examine several properties of the diffusion flux (27).
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3.1. Diffusion flux in local and global equilibrium states

At first, let us examine if the diffusion flux (27) locally disappears in a local equilibrium

state. We rewrite (27) into a symbolic form

Γs(r) = −K
∫
dr′γ[ω, ψ;ω′, ψ′] (32)

where γ is a functional of ω, ψ, ω′ and ψ′. Consider a state where temperature is locally

uniform in each small region in the system, namely there are small regions with different

β. In each small region, a local equilibrium condition is satisfied

ωleq± = ω0± exp(∓βleqΩψleq). (33)

Inserting (33) into γ in (32) and assuming that r and r′ belong to the same subsystem,

we find that

γ[ωleq, ψleq;ω
′
leq, ψ

′
leq]

=
(uleq − u′

leq)(uleq − u′
leq)

|uleq − u′
leq|3

· [(ω′
leq+ − ω′

leq−)∇(ωleq+ + ωleq−)− (ωleq+ − ωleq−)∇′(ω′
leq+ + ω′

leq−)]

= − βleqΩ(ω
′
leq+ − ω′

leq−)(ωleq+ − ωleq−)

×
(uleq − u′

leq)(uleq − u′
leq)

|uleq − u′
leq|3

· (∇ψleq −∇′ψ′
leq)

= 0 (34)

where uleq = −ẑ ×∇ψleq is used. As uleq − u′
leq is perpendicular to ∇ψleq −∇′ψ′

leq, γ

is equal to zero and this result indicates that the detailed balance is achieved.

When the system reaches a global thermal equilibrium state characterized by

ωeq± = ω0± exp(∓βΩψeq), (35)

with uniform β (Joyce & Montgomery 1973), we obtain

∇′ω′
eq = ∇′(ω′

eq+ + ω′
eq+)

= − βΩ(ω′
eq+ − ω′

eq−)(∇′ψ′
eq −∇ψeq +∇ψeq). (36)

As (ueq − u′
eq) · (∇′ψ′

eq −∇ψeq) = 0, the drift term in (30) is rewritten as

Vs,eq = −βΩDs,eq · ∇ψeq (37)

and the total diffusion flux vanishes. Equation (37) is a counterpart of the Einstein

relation (Chavanis 2001, Chavanis 2008).

3.2. Sign of dω/dψ near thermal equilibrium states

If the sign of the inverse temperature β is negative, we obtain

dωeq

dψeq

= −βΩ(ωeq+ − ωeq−) ≥ 0 (38)
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and

∇ · (ueqωeq) = 0 (39)

where equations (35) and

ωeq = ωeq+ + ωeq− (40)

are used. The point vortex system easily approaches a quasi-stationary state near the

thermal equilibrium state by a violent relaxation which is purely collisionless and driven

by the mean field effects. The local equilibrium state is also categorized in the above

state. In the local equilibrium state near the thermal equilibrium one, the following

relation is expected to be satisfied (Yatsuyanagi et al. 2014)

∇ · (uleqωleq) ≈ 0 (41)

or equivalently

ωleq = ωleq(ψleq). (42)

In this state, we may expect that

dωleq

dψleq

≥ 0 (43)

almost everywhere in the system. We will use this relation later.

3.3. Energy-conservative property of diffusion flux

It is shown that the obtained kinetic equation (25) conserves the total mean field energy

E:

E ≡ 1

2

∫
drψω

=
1

2

∫
dr

∫
dr′G(r − r′)ω′ω. (44)

Time derivative of the total mean field energy E is given by

dE

dt
=

1

2

∫
dr

∫
dr′G(r − r′)

(
∂ω′

∂t
ω + ω′∂ω

∂t

)
=

∫
drψ

∂ω

∂t
, (45)

Inserting the space-averaged equation of motion (25) into (45), we obtain

dE

dt
=

∫
drψ (−∇ · (uω)−∇ · Γs)

=

∫
dr∇ψ · uω +

∫
dr∇ψ · Γs

=

∫
dr∇ψ · Γs

= −K

∫
dr

∫
dr′∇ψ · (u− u′)(u− u′)

|u− u′|3

·
[
(ω′

+ − ω′
−)∇ω − (ω+ − ω−)∇′ω′] . (46)
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By permuting the dummy variables r and r′ in (46) and taking the half-sum of the

resulting expressions, we obtain

dE

dt
= − K

2

∫
dr

∫
dr′(∇ψ −∇′ψ′) · u− u′

|u− u′|3

× (u− u′) ·
[
(ω′

+ − ω′
−)∇ω − (ω+ − ω−)∇′ω′]

= 0. (47)

We conclude that the obtained diffusion flux conserves the total mean field energy.

It is also revealed that the energy conservation is achieved by ballancing the energy

dissipation process due to the diffusion term and the energy production process due to

the drift term. We divide the expression (46) into two parts, namely the term which

corresponds to the diffusion term and the one to the drift term.

dE

dt
=

dE

dt

∣∣∣∣
D

+
dE

dt

∣∣∣∣
V

= 0, (48)

dE

dt

∣∣∣∣
D

= −K

∫
dr

∫
dr′∇ψ · (u− u′)(u− u′)

|u− u′|3
· (ω′

+ − ω′
−)∇ω, (49)

dE

dt

∣∣∣∣
V

= K

∫
dr

∫
dr′∇ψ · (u− u′)(u− u′)

|u− u′|3
· (ω+ − ω−)∇′ω′. (50)

If the vorticity ω is a function of the stream function ψ (see (42)), equations (49) and

(50) are rewritten as

dE

dt

∣∣∣∣
D

= −K

∫
dr

∫
dr′ |∇ψ · (u− u′)|2

|u− u′|3
(ω′

+ − ω′
−)
dω

dψ
, (51)

dE

dt

∣∣∣∣
V

= K

∫
dr

∫
dr′ |∇ψ · (u− u′)|2

|u− u′|3
(ω+ − ω−)

dω′

dψ′ . (52)

Thus, if dω/dψ ≥ 0 with β < 0, it is concluded that

dE

dt

∣∣∣∣
V

= − dE

dt

∣∣∣∣
D

≥ 0, (53)

namely,

dE

dt

∣∣∣∣
V

+
dE

dt

∣∣∣∣
D

= 0. (54)

3.4. H theorem

It is shown that the obtained kinetic equation (25) satisfies an H theorem. The entropy

function S is defined by using the H function:

S = − kBH, (55)

H =

∫
dr
ω+

Ω
ln
ω+

Ω
+
ω−

−Ω
ln
ω−

−Ω
+ const.

=
1

Ω

∫
drω+ lnω+ − ω− ln |ω−| − 2N lnΩ + const. (56)
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The time derivative of the H function is given by

dH

dt
=

1

Ω

∫
dr
∂ω+

∂t
(lnω+ + 1)− ∂ω−

∂t
(ln |ω−|+ 1)

=
1

Ω

∫
druω+ · ∇ lnω+ − uω− · ∇ ln |ω−|

+
1

Ω

∫
drΓs+ · ∇ lnω+ − Γs− · ∇ ln |ω−|

=
1

Ω

∫
dru · ∇ω+ − u · ∇ω−

+
1

Ω

∫
drΓs+ · ∇ lnω+ − Γs− · ∇ ln |ω−|

=
1

Ω

∫
drΓs+ · ∇ lnω+ − Γs− · ∇ ln |ω−|. (57)

For simplicity, we introduce the following notations.

∇ lnω+ = v+, ∇ ln |ω−| = v−,

u− u′ = U . (58)

Inserting (27) into (57), we obtain

dH

dt
= − K

Ω

∫
dr

∫
dr′v+ · UU

|U |3
· [(ω′

+ − ω′
−)∇ω+ − ω+∇′ω′]

− K

Ω

∫
dr

∫
dr′v− · UU

|U |3
· [(ω′

+ − ω′
−)∇ω− + ω−∇′ω′]

= − K

Ω

∫
dr

∫
dr′ 1

|U 3|
×
[
ω+ω

′
+(v+ ·UU · (v+ − v′

+)

+ ω−ω
′
−(v− ·UU · (v− − v′

−)

− ω+ω
′
−(v+ ·UU · (v+ + v′

−)

− ω−ω
′
+(v− ·UU · (v− + v′

+)
]
. (59)

By permuting the dummy variables r and r′ in (59) and taking the half-sum of the

resulting expressions, we obtain

dH

dt
= − K

2Ω

∫
dr

∫
dr′ 1

|U |3

× [ω+ω
′
+|(v+ − v′

+) ·U |2

+ ω−ω
′
−|(v− − v′

−) ·U |2

− ω+ω
′
−|(v+ − v′

−) ·U |2

− ω−ω
′
+|(v− − v′

+) ·U |2] ≤ 0. (60)

As the integrand of (60) is positive or equal to zero, dH/dt is negative or equal to zero.

It is concluded that the entropy function (55) is the monotonically increasing function.

It is also revealed that the diffusion term increases the entropy, while the drift term

decreases it. We divide the expression (57) into two parts (the entropy function S is
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used instead of the H function).

dS

dt
=

dS

dt

∣∣∣∣
D

+
dS

dt

∣∣∣∣
V

≥ 0, (61)

dS

dt

∣∣∣∣
D

=
kB
Ω

∫
dr

∇ω+ · Ds · ∇ω+

ω+

− ∇ω− · Ds · ∇ω−

ω−

= kB
K

Ω

∫
dr

∫
dr′
(
|∇ω+ · (u− u′)|2

ω+

− |∇ω− · (u− u′)|2

ω−

)
×
ω′
+ − ω′

−

|u− u′|3
, (62)

dS

dt

∣∣∣∣
V

= − kB
Ω

∫
drVs · ∇ω

= − kB
K

Ω

∫
dr

∫
dr′∇ω · (u− u′)(u− u′)

|u− u′|3
· ∇′ω′. (63)

Equation (62) indicates that

dS

dt

∣∣∣∣
D

≥ 0 (64)

regardless of the sign of dω/dψ. On the other hand, if the system reaches a local

equilibrium state, we expect that (43) is valid. In this case, equation (63) is rewritten

as

dS

dt

∣∣∣∣
V

= −kB
K

Ω

∫
dr

∫
dr′ |∇ψ · (u− u′)|2

|u− u′|3
dω

dψ

dω′

dψ′ (65)

and we obtain

dS

dt

∣∣∣∣
V

≤ 0 (66)

in the local equilibrium state. When the system reaches a thermal equilibrium state,

the relation

dS

dt

∣∣∣∣
V

= − dS

dt

∣∣∣∣
D

≤ 0 (67)

namely,

dS

dt

∣∣∣∣
V

+
dS

dt

∣∣∣∣
D

= 0 (68)

is satisfied, and the entropy production stops.

This clearly indicates the crucial role of the drift term in the self-organization of

the point vortex system. The diffusion term increases the entropy, while the drift term

decreases it. Namely, in the self-organization of the 2D point vortex system with negative

β, a background distribution outside the clumps is necessary to dump the entropy. The

clump formation is driven by the drift term and the background distribution outside the

clumps is made by the diffusion term. This conclusion is supported by the nonneutral

plasma experiments (Sanpei et al. 2003, Soga et al. 2003, Jin & Dubin 1998, Fine

et al. 1995) and the numerical simulation (Yatsuyanagi et al. 2005).
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Figure 1. Time evolution of the vortices up to 40 turnover time of an initial small

clump is shown. Characteristic turnover time is given by T ≈ 5. Initial profile is

quickly destroyed and two relatively large clumps with same-sign vortices are formed

by the self-organizing feature of the system.

4. Numerical result

We will demonstrate an example of the self-organization in the 2D point vortex system by

numerical simulations. Twenty positive (red) and 20 negative (blue) clumps are initially

arranged uniformly in a circular wall with radius R. Each clump is composed of the

same-sign 283 vortices. Total number of the vortices is 283×40 = 11320. Characteristic

time scale is given by a self-rotation time of a small clump T ≈ 5. A motion of the

vortices are traced by the following equation of motion

∂ri
∂t

=
1

2π

∑
j ̸=i

Ωi
ẑ × (ri − rj)

|ri − rj|2
− 1

2π

∑
j

Ωi
ẑ × (ri − r̄j)

|ri − r̄j|2
(69)

where the circular wall effect is introduced by image vortices located at

r̄i =
R2

|ri|2
ri. (70)

Time evolution of the system is given in figure 1. The system finally settles down into

a well-known self-organized thermal equilibrium state which is described by the sinh-

Poisson equation (Joyce & Montgomery 1973, Pointin & Lundgren 1976). Remarkable
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features of this result are the charge-separation of the vortices and the condensation of

the same-sign vortices. Energy belonging to the i-th point vortex Hi is defined by

H =
∑
i

Hi,

Hi =
1

2
Ωiψi,

ψi = − 1

2π

∑
j ̸=i

Ωj ln |ri − rj|+
1

2π

∑
j

Ωj ln |ri − r̄j|

− 1

2π

∑
j

Ωj ln

∣∣∣∣ R|rj|
∣∣∣∣ (71)

where H is a total energy of the system. Energy of the vortices inside a clump is positive

and large as the same-sign vortices are confined in a small region. Such configuration

is enabled by the drift term as is shown in (53). In addition, the drift term plays an

important role of separation of the positive and negative vortices. The positive vortices

and the negative vortices are driven in the opposite directions by the drift term as the

signs of the drift terms for the positive and the negative vortices in (28) are opposite.

On the other hand, the system is an energy-conserving one. Thus, if there are

vortices that gains energy by the clumping, there must be vortices that loses energy.

These vortices that loses energy go outside a clump and form a background distribution.

This feature to lower the energy of the vortices is provided by the diffusion term as is

shown in (53).

Another evidence for the charge-separation is given in figure 2. It can be seen that

the center of gravity of the positive vortices goes downward and the center of gravity of

the negative vortices goes upward. This figure clearly indicates the charge separation.

Following these observations, we conclude that Fokker-Planck type collision term

for double-species 2D point vortex system provides an essential and crucial role for the

self-organization in the system at negative absolute temperature.

5. Discussion

5.1. Confinment of positive and negative vortices in an infinite domain

In our kinetic theory, the vortices are located in an infinite domain without any

boundary. A positive and a negative vortices with the same strength move in parallel

straight lines. Many pairs of the positive and negative vortices escape from the initial

center of vortices without violating the conservation of the inertia I,

I =
∑
i

Ωi|ri|2. (72)

However, if the system temperature is negative, clumps consisting of the same sign

vortices are expected to be formed by the rapid violent relaxation and two clumps with

the different signs travel along the perpendicular bisector of the line joining the two

centers of the clumps with nearly constant speed. So even if there is no boundary, our
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Figure 2. Trajectories of centers of gravity of the positive (red line) and negative

(blue line) vortices are plotted. Length scale is normalized by the radius of the

circular wall R. Initial positions of both centers of gravity locate at the center of

the wall. The distance between the both centers of gravity at the end of the simulation

is approximately 0.20R.

kinetic theory describes the relaxation process in the reference flame moving with the

center of the two clumps.

5.2. Magnitude of the expansion parameter ϵ

We have estimated the magnitude of the expansion parameter ϵ in the previous paper

(Yatsuyanagi et al. 2015). We find a new estimation and will present the result.

Let us reexamine the order of ϵ, which is given by the ratio of the drift velocity to

the macroscopic fluid velocity,

|V |
|u|

=

∣∣∣K ∫ dr′ (u−u′)(u−u′)·∇′ω′

|u−u′|3

∣∣∣
|u|

= O

(
1

16

1

N±

(
R

L

)2
)
. (73)

Here, we have used the relations kmin = 2π/R, |u| = Rω and ω = N±Ω/(πR
2), which

are introduced in Yatsuyanagi et al. (2015). The notation R is the characteristic length

of the system, L(< R) the space-averaging size introduced in Appendix. As the order
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of the obtained diffusion flux (27) is O(ϵ), the following scaling is obtained,

ϵ ≈ 1

16

1

N±

(
R

L

)2

. (74)

Let us introduce a notation NL as

NL ≡ N±

(
L

R

)2

. (75)

This notation represents the number of vortices inside the space-averaging (coarse-

graining) area with sides L × L. Finally, the smallness parameter ϵ is characterized

by

ϵ ≈ 1

NL

>
1

N±
. (76)

where N± is given by a counterpart of (8)

1 < π

(
R

L

)2

< N± <
π

16

(
R

L

)4

. (77)

This quantity directly corresponds to the discreteness of matter for our kinetic theory.

5.3. Comparison of the directions of the diffusion and the drift with an ordinary

Fokker-Planck system

In an ordinary Fokker-Planck system with positive β, particles are populated in a low

energy state and the diffusion occurs toward a high energy state. Low energy particles

diffuse toward the high energy state by the diffusion, while high energy particles lose

their energy by the friction and go to the low energy state. On the other hand, in a

point vortex system with negative β, vortices are populated in a high energy state and

the diffusion occurs toward a low energy state. High energy vortices diffuse toward the

low energy state by the diffusion, while low energy vortices gain their energy by the

drift and go to the high energy state. Namely, regardless of the sign of β, the diffusion

term works to lower the population of the particles (vortices). On the other hand, when

β > 0, the friction term decreases the speed of the diffusion. When β < 0, the drift

term works to accumulate the vortices against the diffusion. This effect of the drift term

may be called “negative friction”. Note that the directions of the diffusive effect and

the drift effect are always opposite regardless the sign of β.

6. Conclusion

We have demonstrated the simple and explicit formula (27) of the Fokker-Planck type

collision term for double-species point vortex system without the collective effect. We

have also demonstrated the strong evidence of the important role of the drift term in

the self-organization of the 2D point vortex system at negative absolute temperature.

The previous model for the single-species point vortex system (Yatsuyanagi

et al. 2015) corresponds to the guiding-center nonneutral plasmas. However, as the
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Figure 3. Populations in the energy space are illustrated. In an ordinary Fokker-

Planck system with positive β, particles are populated in a low energy state and the

diffusion occurs toward a high energy state. On the other hand in a point vortex

system with negative β, vortices are populated in a high energy state and the diffusion

occurs toward a low energy state.

nonneutral plasma is not a perfect tool to understand all the phenomena in the 2D

turbulence, we have motivated to extend the previous result to the double-species system

allowing the different numbers of the positive and the negative vortices. The current

model can be applied to researches on the 2D turbulence, including plasmas with the

same magnitudes of the charges and the masses, e.g., electron-positron plasmas and

hydrogen-antihydrogen plasmas.

The obtained diffusion flux Γs conserves the mean field energy. The H theorem

ensures that a point vortex system of any type of the flow, including an axisymmetric

one, relaxes to the Boltzmann thermal equilibrium state (35). The positive and the

negative vortices independently relax to the thermal equilibrium states even if the

numbers of the positive and the negative vortices are different.

It should be noted again that the drift term plays the important role in the self-

organization in the 2D point vortex system. In (28), the sign of the drift term changes

in accordance with the sign of the vorticity, while the sign of the diffusion term is

always negative. This implies that the drift term provides the “charge separation” of
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the vortices, which is commonly observed in equilibrium states at negative temperature.

During a relaxation process in a closed system, (Boltzmann) entropy should increase

even if the system energy is conserved. It is reasonable that a distribution of particles

broaden and finally reaches a flat distribution. Thus, it is difficult to understand

the clump formation usually seen in the 2D self-organization as the entropy seems to

decrease. As is discussed in section 3.4, it is found that the drift term decreases the

entropy, while the total entropy increases. The effect of the drift term to decrease the

entropy, say negative entropy production, hide behind the effect of the diffusion term

to increase the entropy. It has also been stressed the common and essential role of

the background vortices in supporting the vortex condensation experimentally (Sanpei

et al. 2003, Soga et al. 2003, Jin & Dubin 1998, Fine et al. 1995) and numerically

(Yatsuyanagi et al. 2005). This role is provided by the drift term. Note that the

negative entropy production and the negative friction exist also in a single-species point

vortex system.

It was reported that a sinh-Poisson equilibrium state is observed in a 2D

Navier-Stokes system with finite Reynolds number (Montgomery et al. 1992, Li &

Montgomery 1996, Li et al. 1997), although the sinh-Poisson equation is derived

not in a continuous fluid system but in a discretized point vortex system (Joyce &

Montgomery 1973). It is conjectured that the collision term in the Navier-Stokes

equation implicitly involves a turbulent drift-like effect at high Reynolds number in

addition to the turbulent diffusion.

There are several outstanding issues remaining. First, the final formulae (29) and

(30) include unknown parameters kmin and L. Second, the integrals in (29) for Ds and

(30) for Vs contain the divergent integrand, although combined terms Γs = Γs+ + Γs−

are regularized. A method to resolve this problem may be to introduce a corrective

effect, some kind of screening. Third, the obtained diffusion flux does not conserve the

inertia (72) for an arbitrary flow. If the flow is axisymmetric, the inertia conserves. A

more rigorous justification will be needed for fixing the above issues.
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Appendix A. Outline of the calculation

In the following, we show an outline for deriving an explicit formula for the diffusion

fluxes Γ±.

To rewrite the diffusion fluxes (18), we introduce linearized equations obtained

by inserting (19) and (20) into (17) and assembling the terms of the order up to ϵ

(Yatsuyanagi et al. 2015):

∂

∂t
δω± +∇ · (uδω±) = −δu · ∇ω±. (A.1)
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As the macroscopic quantities u appearing in the second term in the left-hand side

and ∇ω± in the right-hand side are supposed to be constant in the time scale of the

microscopic fluctuation, equations (A.1) can be integrated

δω± = −
∫ t

t0

dτδu(r − u(t− τ), τ) · ∇ω±

+ δω±(r − u(t− t0), t0). (A.2)

This approximation means that the mean trajectory is linear (straight) (Chavanis 2008,

Yatsuyanagi et al. 2015). The value of t0 is chosen to satisfy t − t0 ≫ tc where tc is a

correlation time of the fluctuation.

Substituting (A.2) into the correlation terms in (21), we obtain

Γ±

= −
∫ t

t0

dτ

∫
dr′
∫
dr′′F (r − r′)F (r − u(t− τ)− r′′) · ∇ω±

× ⟨δω(r′′, τ)δω′⟩

−
∫ t

t0

dτ

∫
dr′
∫
dr′′F (r − r′)F (r′ − u′(t− τ)− r′′) · ∇′ω′

× ⟨δω(r′′, τ)δω±⟩ (A.3)

where∇′ω′ = ∇r′ω(r′). There are three correlation terms ⟨δω(r′′, τ)δω′⟩, ⟨δω(r′′, τ)δω+⟩
and ⟨δω(r′′, τ)δω−⟩ in (A.3). At first, we handle the term ⟨δω(r′′, τ)δω+⟩.

⟨δω(r′′, τ)δω+⟩

=

⟨
N+∑
i=1

Ω2
i δ(r

′′ − ri(τ))δ(r − ri)

⟩

+

⟨
N++N−∑

i=1

N+∑
j ̸=i

ΩiΩjδ(r
′′ − ri(τ))δ(r − rj)

⟩
− ω(r′′, τ)ω+. (A.4)

The first term in the right-hand side in (A.4) corresponds to the case of i = j, and the

second term corresponds to the case of i ̸= j.

For the i = j case, the formula is rewritten as⟨
N+∑
i=1

Ω2
i δ(r

′′ − ri(τ)− r + ri)δ(r − ri)

⟩

=

N+∑
i=1

Ω2
i ⟨δ(r′′ − r + ui(t− τ) + ξi)⟩ξ ⟨δ(r − ri)⟩

= ⟨δ(r′′ − r + u(t− τ) + ξ)⟩ξ Ωω+ (A.5)

Here we introduce a stochastic process to evaluate ri − ri(τ)

ri − ri(τ) =

∫ t

τ

u(ri(τ
′), τ ′)dτ ′ + ξi

≈ ui(t− τ) + ξi. (A.6)
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The first term in (A.6) represents the approximation that the mean trajectory is linear

and the second term represents a Brownian motion. The stochastic process represented

by ⟨·⟩ξ includes all the possible motions to reach position ri at time t.

For the i ̸= j case, we introduce an approximation that the correlation between the

particles can be neglected and the term is rewritten as⟨
N++N−∑

i=1

N+∑
j ̸=i

ΩiΩjδ(r
′′ − ri(τ))δ(r − rj)

⟩
= (ω+(r

′′, τ) + ω−(r
′′, τ))ω+

− 1

N+

ω+(r
′′, τ)ω+, (A.7)

assuming

N++N−∑
i=1

Ωi ⟨δ(r′′ − ri(τ))⟩ = ω+(r
′′, τ) + ω−(r

′′, τ), (A.8)

ω+(r
′′, τ) = N+Ω ⟨δ(r′′ − ri(τ))⟩ , (A.9)

ω−(r
′′, τ) = −N−Ω ⟨δ(r′′ − ri(τ))⟩ . (A.10)

Combining the results of the i = j and the i ̸= j cases, we rewrite (A.4) as

⟨δω(r′′, τ)δω+⟩
= Ω ⟨δ(r′′ − r + u(t− τ) + ξ)⟩ξ ω+

− 1

N+

ω+(r
′′, τ)ω+. (A.11)

Similarly, we obtain

⟨δω(r′′, τ)δω−⟩
= − Ω ⟨δ(r′′ − r + u(t− τ) + ξ)⟩ξ ω−

− 1

N−
ω−(r

′′, τ)ω−. (A.12)

⟨δω(r′′, τ)δω′⟩
= Ω ⟨δ(r′′ − r′ + u′(t− τ) + ξ)⟩ξ

(
ω′
+ − ω′

−
)

− 1

N+

ω+(r
′′, τ)ω′

+ − 1

N−
ω−(r

′′, τ)ω′
−). (A.13)

To proceed with the evaluation of (A.11), (A.12) and (A.13), conservation laws are

introduced ∫
dr′ ⟨δω(r′′, τ)δω′⟩ = 0, (A.14)∫
dr ⟨δω(r′′, τ)δω±(r, t)⟩ = 0. (A.15)

Using these formulae, each term in (A.3) is evaluated.

−
∫ t

t0

dτ

∫
dr′
∫
dr′′F (r − r′)F (r − u(t− τ)− r′′) · ∇ω±
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× ⟨δω(r′′, τ)δω′⟩

= − Ω

∫
dr′F (r − r′)

∫
dk

(2π)2

× exp(ik · (r − r′))
ẑ × ik

|k|2
·
(
ω′
+ − ω′

−
)
∇ω±

×
[
πδ(k · (u− u′))− ik · (u− u′)

|k · (u− u′)|2 + ν2

]
, (A.16)

−
∫ t

t0

dτ

∫
dr′
∫
dr′′F (r − r′)F (r′ − u′(t− τ)− r′′) · ∇′ω′

× ⟨δω(r′′, τ)δω±⟩

= ± Ω

∫
dr′F (r − r′)

∫
dk

(2π)2
exp(ik · (r − r′))

ẑ × ik

|k|2
· ω±∇′ω′

×
[
πδ(k · (u− u′))− ik · (u− u′)

|k · (u− u′)|2 + ν2

]
. (A.17)

The whole results are given by

Γ± = − Ω

∫
dr′
∫

dk

(2π)2

∫
dk′

(2π)2
exp(i(k + k′) · (r − r′))

×
[
πδ(k · (u− u′))− ik · (u− u′)

|k · (u− u′)|2 + ν2

]
× ẑ × ik′

|k′|2
ẑ × ik

|k|2
·
[
(ω′

+ − ω′
−)∇ω± ∓ ω±∇′ω′] (A.18)

where we have used the relation

F (r − q′ − (u− u(q′))(t− τ))

=
1

(2π)2

∫
dk

ẑ × ik

|k|2
exp(ik · (r − q′ − (u− u(q′))(t− τ))). (A.19)

It should be noted that the obtained diffusion fluxes (A.18) can be divided into two

parts, namely the diffusion tensor D(r, t) proportional to ∇ω± and the drift velocity

V (r, t) proportional to ω±.

Γ± = − D · ∇ω± ± V ω±, (A.20)

D = Ω

∫
dr′
∫

dk

(2π)2

∫
dk′

(2π)2
exp(i(k + k′) · (r − r′))

×
[
πδ(k · (u− u′))− ik · (u− u′)

|k · (u− u′)|2 + ν2

]
× ẑ × ik′

|k′|2
ẑ × ik

|k|2
(ω′

+ − ω′
−) (A.21)

V = Ω

∫
dr′
∫

dk

(2π)2

∫
dk′

(2π)2
exp(i(k + k′) · (r − r′))

×
[
πδ(k · (u− u′))− ik · (u− u′)

|k · (u− u′)|2 + ν2

]
× ẑ × ik′

|k′|2
ẑ × ik

|k|2
· ∇′ω′ (A.22)
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Equations (A.21) and (A.22) include the oscillatory term exp(i(k + k′) · (r − r′)). To

reveal the characteristics of the obtained collision term, we need to calculate the space

average of the diffusion fluxes to drop the high-frequency component. Space average is

calculated over the small rectangular area Λ(r) with sides both 2L located at r. The

space average of the diffusion fluxes Γ± is defined by

⟨Γ±⟩s ≡ Γs±(r) =
1

|Λ(r)|

∫
Λ(r)

dr′′Γ±(r
′′). (A.23)

We assume that the macroscopic variables such as u and ω may be constant inside Λ(r)

and only the term exp(i(k + k′) · (r − r′)) should be space-averaged.

Finally, we obtain the following formulae for the diffusion and the drift terms.

Γs±(r) ≡ − Ds · ∇ω± ± Vsω±, (A.24)

Ds = K

∫
dr′ (u− u′)(u− u′)(ω′

+ − ω′
−)

|u− u′|3
, (A.25)

Vs = K

∫
dr′ (u− u′)(u− u′) · ∇′ω′

|u− u′|3
, (A.26)

K =
Ω

(2π)3

(π
L

)2 1

kmin

, (A.27)

where the parameter kmin is introduced to regularize a singularity. It is determined by

the largest wave length that does not exceed the system size, namely kmin = 2π/R where

R is a characteristic system size determined by an initial distribution of the vortices.

Note that in (A.25) and (A.26), two unknown parameters L and kmin remain.

References

Chavanis P H 1998 Phys. Rev. E 58, R1199.

Chavanis P H 2001 Phys. Rev. E 64, 026309.

Chavanis P H 2008 Physica A 387, 1123.

Chavanis P H 2012 J. Stat. Mech. 2012, P02019.

Chavanis P H & Lemou M 2007 Eur. Phys. J. B 59, 217.

Dubin D H E 2003 Phys. Plasmas 10, 1338.

Dubin D H E & Jin D Z 2001 Phys. Lett. A 284, 112.

Dubin D H E & O’Neil T M 1988 Phys. Rev. Lett. 60, 1286.

Eyink G L & Sreenivasan K R 2006 Rev. Mod. Phys. 78, 87.

Fine K S, Cass A C, Flynn W G & Driscoll C F 1995 Phys. Rev. Lett. 75, 3277.

Jin D Z & Dubin D H E 1998 Phys. Rev. Lett. 80, 4434.

Joyce G & Montgomery D 1973 J. Plasma Phys. 10, 107–121.

Kida S 1975 J. Phys. Soc. Jpn. 39, 1395.

Kida S 1985 J. Phys. Soc. Jpn. 54, 2840.

Klimontovich Y L 1967 The statistical theory of non-equilibrium processes in a plasma MIT Press

Cambridge, Massachusetts.

Kraichnan R H & Montgomery D 1980 Rep. Prog. Phys. 43, 547.

Li S & Montgomery D 1996 Phys. Lett. A 218, 281.

Li S, Montgomery D & Jones W B 1997 Theoret. Comput. Fluid Dynamics 9, 167.

Montgomery D, Shan X & Matthaeus W H 1992 Phys. Fluids A4, 3–6.

Newton P K 2001 Springer-Verlag Berlin chapter 1-3.



23

Onsager L 1949 Nuovo Cimento Suppl. 6, 279.

Pointin Y B & Lundgren T S 1976 Phys. Fluids 19, 1459.

Robert R & Sommeria J 1992 Phys. Rev. Lett. 69, 2776.

Sanpei A, Kiwamoto Y, Ito K & Soga Y 2003 Phys. Rev. E 68, 016404.

Soga Y, Kiwamoto Y, Sanpei A & Aoki J 2003 Phys. Plasmas 10, 3922.

Tabeling P 2002 Phys. Rep. 362, 1.

Taylor J B & McNamara B 1971 Phys. Fluids 14, 1492.

Yatsuyanagi Y, Hatori T & Chavanis P H 2015 J. Phys. Soc. Jpn. 84, 014402.

Yatsuyanagi Y, Ikeda M & Hatori T 2014 Pacific J. Math. Industry 6, 3.

Yatsuyanagi Y, Kiwamoto Y, Ebisuzaki T, Hatori T & Kato T 2003 Phys. Plasmas 10, 3188.

Yatsuyanagi Y, Kiwamoto Y, Tomita H, Sano M M, Yoshida T & Ebisuzaki T 2005 Phys. Rev. Lett.

94, 054502.


