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Abstract

Based on the Bethe ansatz equation and the finite-size scaling analysis

of conformal field theory, we calculate critical exponents of the ground state

correlations of the quantum Toda lattice. It is shown that the Toda lattice

belongs to the c = 1 Gaussian universality class.
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There has been considerable progress in understanding critical properties of one-

dimensional integrable models by combing Bethe ansatz method and conformal field theory

(CFT) [1]. Many lattice models (Heisenberg model, Hubbard model and supersymmetric

t − J model [2] etc.) and continuum models (nonlinear Schrödinger model and Calogero-

Sutherland model [3,4] etc.) have been studied in a systematic way [5–10]. Most of these

models have a critical point at T = 0 and excitations are gapless. Their correlation functions

decay asymptotically as powers of the distance. It is now recognized that they belong to the

same universality class described by the c = 1 Gaussian CFT.

The Toda lattice is also one of the most popular integrable models and has been studied

extensively over two decades [11]. It consists of many particles interacting with a nearest-

neighbour potential of an exponential type. The classical equations of motion can be given

in a Lax form [12] and thus conserved quantities are easily constructed. These conserved

quantities are of Hénon-type [13] and, in the quantization procedure, ordering problems of

operators {x̂i, p̂i} do not occur. A systematic way of the quantization of the periodic Toda

lattice has been developed by Gutzwiller [14]. He succeeded in constructing simultaneous

eigenfunctions of the operators of conserved quantities for N = 2, 3 and 4 particle lat-

tices. Later, his method was extended generally for N -particle Toda lattice by Pasquier

and Gaudin [15]. Those quantization conditions are rather complicated and they are not in

the form of the Bethe ansatz equation. Sklyanin [16] has combined the quantum spectral

transform method (QSTM) (R-matrix formalism) and Gutzwiller’s formulation and derived

an equation for the spectrum of the quantum Toda lattice. Fowler and Frahm [17] studied

the periodic Toda lattice based on Gutzwiller’s quantization conditions and pointed out that

the energy spectra of a finite particle system are different from those given by Bethe ansatz

equation. Recently we have shown [18,19] that the quantization conditions are significantly

simplified in the large N limit and they become ordinary forms of the Bethe ansatz equa-

tions. In Ref. [18,19] we have studied bulk properties of the Toda lattice, i.e., ground state

energy and thermodynamics. They are found to be essentially the same as those given by

Hader and Mertens [20] who assumed asymptotic Bethe ansatz for the Toda lattice. How-
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ever, correlation functions and critical properties have not been investigated so far. In this

Letter, we will show that critical properties of the quantum Toda lattice can also be de-

scribed based on the finite-size scaling analysis of CFT and it belongs to the c = 1 Gaussian

universality class.

The Hamiltonian of the N -particle Toda lattice confined in a box with length L is given

in a dimensionless form as [19]

H = − h̄2

2

N∑

i=1

∂2

∂x2
i

+ e−L/N
N∑

i=1

exp(xi − xi+1) (1)

where we set a periodic boundary condition xN+1 = x1. Since the interactions are of nearest-

neighbour type, particles are neither bosons nor fermions. This is a distinctive feature of

the Toda lattice which contrasts with other continuum models. Instead the system has

the symmetry of the dihedral group DN and eigenstates can be classified according to the

irreducible representations of the DN group [21]. In Eq.(1) we have rescaled the constant h̄,

Plank’s constant divided by 2π, as h̄/(ma2V0) → h̄, where m is the mass of a particle, V0

and a are the strength and the range of the potential respectively. Since the Toda lattice is

not scale-invariant, h̄ sets the scale of the system. We will write h̄ explicitly since we will

discuss the scale dependence of the energy and critical exponents. The Hamiltonian is the

same as that of a periodic Toda lattice and we will apply quantization conditions given by

Gutzwiller [14], which are rather involved and we will not review them here. In Ref. [18,19]

we have shown that they are largely simplified in the large N limit and become

2πni = Lki + 2Nki ln h̄ + 2
∑

j

arg(Γ(1 + i(ki − kj))) (2)

where ni is an integer (a half-odd integer) for N = odd (even) and k′is are rapidities. Eq.(2)

is valid for the system with total momentum P = h̄
∑

j kj = 0 and only intrinsic degrees of

freedom are taken into account. However, we will also consider the current excitaion which

shifts the center of mass without changing internal motions. Taking into account the current

excitaion, Eq.(2) should be modified to

2πni = Lki + 2Nki ln h̄ + 2
∑

j

arg(Γ(1 + i(ki − kj)))− 2
∑

j

kj ln h̄
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= Lki + 2
∑

j

(
(ki − kj) ln h̄ + arg(Γ(1 + i(ki − kj)))

)
. (3)

Eq.(3) is an ordinary form of the Bethe ansatz equation. The momentum and the energy of

the system are

P =
2πh̄

L

∑

j

nj = h̄
∑

j

kj , E =
h̄2

2

∑

j

k2
j . (4)

In the thermodynamic limit (N, L → ∞, with the density D = N/L kept constant),

the rapidities {ki} in the ground state are distributed in a finite interval [−Q,Q] with a

distribution function ρ(k) satisfying

ρ(x) =
1

2π
+

∫ Q

−Q

dy

2π
K(x− y)ρ(y) (5)

where the kernel is K(x−y) = 2(ln h̄+<ψ(1+ i(x−y))), ψ(z) being the digamma function,

i.e., ψ(z) = Γ′(z)/Γ(z). The density distribution ρ(x) is normalized as
∫ Q
−Q ρ(x)dx = N/L =

D. The energy per particle is

E/N = D−1h̄2
∫ Q

−Q

1

2
x2ρ(x)dx . (6)

The dressed energy ε(k) of an elementary excitation is given by the integral equation

ε(x) = ε0(x) +
∫ Q

−Q

dy

2π
K(x− y)ε(y) (7)

where ε0(k) is the bare energy, i.e., ε0(k) = h̄2k2/2 − µ and the chemical potential µ is

determined by the condition ε(±Q) = 0.

The kernel of the integral equations (5,7) is quite different from those for the Heisenberg

model and nonlinear Schrödinger model which have Lorenzian-type kernels. The function

K(x) = 2(ln h̄ + <ψ(1 + ix)) is an even function and monotonically increases for x > 0.

At x = 0, K(0) = 2(ln h̄ − γE), γE being Euler’s constant and K(x) ∼ 2 ln(h̄x) for x →
∞. The maximum eigenvalue of the kernel becomes unity at a certain critical value Qc

where the density diverges D → ∞. For example, for the scales h̄ = 10−2, 1, 102, Qc '
207.3, 2.899, 0.3807 respectively and ∂Qc/∂h̄ < 0. In the interval 0 < Q < Qc, the density

D is a monotonically increasing function of Q, i.e., ∂D/∂Q > 0. Since Eq.(5) is rewritten as
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ρ(x) =
1

π
D ln(h̄e1/2D) +

1

π

∫ Q

−Q
dy<ψ(1 + i(x− y))ρ(y) , (8)

the functional form is determined only by Q apart from a normalization and thus the com-

bination h̄e1/2D is also a function of Q. Therefore the energy per particle u = E/N is also

a function of Q. Our numerical calculation gives an empirical form u ∼ h̄2 × CQα with

C ' 0.177, α ' 2.11 for the wide range 10−2 < Q < 102.

In Fig.1 we show the energy per particle u as a function of the density D. u is

monotonically increasing and, at D = ∞, it coincides a chemical potential µ, since

µN = G = E − TS + PL = E at T = 0, L = 0. In the case h̄ → ∞ (Qc → 0) and

low density D ¿ 1, the range of the potential becomes effectively very small and it becomes

a hard-wall potential, i.e., V (x) = 0 (∞) for x < 0 (x > 0). The particles interacting with a

hard-wall potential behave in the same way as hard-core bosons (bosons interacting with an

infinitely repulsive δ-function potential) or free spinless fermions. The energy per particle u

of the free Fermi gas is u = π2h̄2D2/6 and it is also shown in Fig.1 for the scale h̄ = 102. On

the other hand, the case h̄ → 0 (Qc → ∞) corresponds to a classical system. The classical

ground state is a static configuration of particles and rapidity kj is given by kj = Qtj where

tj = cos π(2j + 1)/2N (j = 0, 1, . . . , N − 1) is a zero of Chebyshev’s polynomial. Thus the

density distribution becomes ρ(x) = D(Q2− x2)−1/2/π, which is an approximate solution of

Eq.(5) given by Sutherland [22]. Employing the solution ρ(x) = D(Q2 − x2)−1/2/π, one can

obtain Q ' 2h̄−1e−1/2D and u ' h̄2Q2/4 ' e−1/D, which coincides an energy per particle of

the classical system. The classical energy density u = e−1/D is also shown in Fig.1.

Let us apply the finite-size scaling analysis to the Toda lattice. The central charge c of

Virasoro algebra can be easily extracted from the finite-size correction to the ground state

energy E0 [23,24]

E0 = Lε∞ − πv

6L
(9)

where ε∞ is the energy density of the infinite system and v = ε′(Q)/(2πρ(Q)) is the Fermi

velocity. From Eq.(9) it is readily recognized that the Toda lattice can be described by
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the c = 1 Gaussian CFT. The central charge c = 1 can also be obtained from the low

temperature behaviour of the specific heat C ' πT/3v which was calculated by Yang-Yang’s

[25] thermodynamic formulation of the Toda lattice [19].

Next we will examine a tower structure of the energy spectrum [26]. Low energy exci-

tations are characterized by (a) the change of particle number ∆N , (b) the backscattering

of ∆D particles from one Fermi point to other one and (c) N± particle-hole excitations at

Fermi boundaries. The energy and the momentum of these excitations are expressed as

E − E0 =
2πv

L

(
1

4Z2
∆N2 + Z2∆D2 + N+ + N−

)
(10)

P − P0 =
2πh̄

L
(∆N∆D + N+ −N−) + 2pF ∆D (11)

where pF = πh̄N/L is the Fermi momentum. Z is the dressed charge given by Z = ξ(±Q),

where the function ξ(x) is defined by the integral equation

ξ(x) = 1 +
∫ Q

−Q

dy

2π
K(x− y)ξ(y) (12)

and its solution is ξ(x) = 2πρ(x). From Eqs.(10,11) we can assign the conformal dimensions

∆± of the c = 1 Gaussian CFT as

∆± =
1

2

(
∆N

2Z
± Z∆D

)2

+ N± . (13)

It is now straightforward to obtain a long-distance behaviour of correlation functions. The

asymptotic form of the density-density correlation function is given by [6]

〈n(x)n(0)〉 ∼ D2
(
1− θ(2πDx)−2 + A(Dx)−θ cos 2πDx + · · ·

)
(14)

where n(x) is the density operator and 〈n(x)〉 = D. The critical exponent θ of 2pF = 2πh̄D

oscillation term is given by the excitaion (∆N, ∆D, N±) = (0, 1, 0) and θ = 2(∆+ +∆−) =

2Z2.

In Fig.2 we show the critical exponent θ as a function of the density D. In the case of low

density limit D → 0, the critical exponent θ approaches to 2, while for the limit D → ∞,

θ →∞ irrespective of the scale h̄. In the low density region D ¿ 1, the critical exponent θ

is expressed as
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θ ' 2(1 + 4D(ln h̄− γE)) . (15)

Therefore, for h̄ > eγE ' 1.78, θ is monotonically increasing with D, while for h̄ < eγE ,

(∂θ/∂D)D=0 < 0 and θ has a minimum. The system with h̄ À 1 and D ¿ 1 corresponds to

that of the hard-wall potential and particles behave like hard-core bosons, while for h̄ ¿ 1

and D ¿ 1 it reduces to free particles since the exponential potential becomes flat. The

case of h̄ → 0 with a finite density D corresponds to a classical system and θ → 0. The

classical ground state is a static configuration of particles with an equal spacing 1/D and

its correlation function is

〈n(x)n(0)〉 =
∑

l

D2δ(Dx− l)

= D2(1 + 2 cos 2πDx + 2 cos 4πDx + · · ·) (16)

and the correlation does not decay, which results in θ = 0. Fig.2 shows that there are points

of θ = 1 for the scales h̄ <∼ 0.4. At these points, the dressed charge is Z = 1/
√

2 and the

U(1) symmetry of the system is enhanced to that of level-1 SU(2) current algebra. The

behaviour of the critical exponent θ is quite different from those of other continuum models.

For example, nonlinear Schrödinger model is scale-invariant, i.e., a change of the strength

κ of the δ-function interaction is equivalent to the change of the length scale, thus θ is a

function of κD = κN/L, and θ > 2 for any value of κD. On the other hand, Calogero-

Sutherland model is not scale-invariant, however, the critical exponent θ depends only on

the strength of the interaction and does not depend on the density [10].

Next let us consider the asymptotic behaviour of the field correlator 〈ψ(x, t)ψ†(0, 0)〉. In

this case the leading term can be obtained by assigning (∆N, ∆D, N±) = (1, 0, 0) and it is

〈ψ(x, t)ψ†(0, 0)〉 ∼ B|x + ivt|−η (17)

with η = 1/(2Z2) = 1/θ. This scaling relation is the same as 1-dimensional Bose gas.

In summary, we have shown that the quantum Toda lattice belongs to the c = 1 Gaussian

universality class of CFT and low energy excitations show a tower structure of the CFT

energy spectra. For the scale h̄ → ∞ and D ¿ 1, which corresponds to the hard-wall

7



potential, the system behaves like hard-core bosons and the critical exponent is θ = 2, while

the case h̄ → 0 corresponds to a classical system where particles are localized with an equal

spacing and the critical exponent vanishes.
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[23] H.W. Blöte, J.L. Cardy and M.P. Nightingale, Phys.Rev. Lett. 56, 742 (1986)

[24] I. Affleck, Phys.Rev. Lett. 56, 746 (1986)

[25] C.N. Yang and C.P. Yang, J.Math.Phys. 10, 1115 (1969)

[26] J.L. Cardy, Nucl.Phys. B270, 186 (1986)

10



FIGURES

FIG. 1. Energy density u = E/N versus D for scales h̄ = 102, 10, 1 and 10−1. Energy densities

of the classical value u = e−1/D and free Fermi gas u = π2h̄2D2/6 (h̄ = 102) are also shown by

dashed and dot-dashed lines respectively.

FIG. 2. Critical exponent θ versus D for scales h̄ = 102, 10, 1, 10−1 and 10−2.
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