Conserved Mode of Interaction between Yeast Bro1 Family V Domains and YP(X)nL Motif-Containing Target Proteins

SURE 静岡大学学術リポジトリ Shizuoka University REpository

メタデータ	言語: eng		
	出版者:		
	公開日: 2015-11-17		
	キーワード (Ja):		
	キーワード (En):		
作成者: Kimura, Yoko, Tanigawa, Mirai, Kawawaki,			
	Junko, Takagi, Kenji, Mizushima, Tsunehiro, Maeda,		
	Tatsuya, Tanaka, Keiji		
	メールアドレス:		
	所属:		
URL	http://hdl.handle.net/10297/9265		

1	Conserved mode of yeast Bro1 family V domains for interaction with YP(X)nL
2	motif-containing target proteins
3	
4	Yoko Kimura, ^{a,b} # Mirai Tanigawa ^c , Junko Kawawaki, ^b Kenji Takagi, ^d Tsunehiro Mizushima, ^d
5	Tatsuya Maeda, ^c and Keiji Tanaka ^b
6	
7	Department of Agriculture, Graduate School of Integrated Science and Technology, Shizuoka
8	University, Shizuoka 422-8529, Japan ^a , Laboratory of Protein Metabolism, Tokyo
9	Metropolitan Institute of Medical Science, Setagaya-ku, Tokyo 113-8613, Japan ^b , Institute of
10	Molecular and Cellular Biosciences, The University of Tokyo, Tokyo, Japan ^c , Picobiology
11	Institute, Department of Life Science, Graduate School of Life Science, University of Hyogo,
12	Hyogo 678-1297, Japan ^d
13	
14	Running Head: V-domain analyses of yeast Bro1 and Rim20
15	
16	#Address correspondence to Yoko Kimura, kimura.yoko@shizuoka.ac.jp
17	
18	
19	

20 Abstract

21 Yeast Bro1 and Rim20 belong to a family of proteins, which possess a common architecture 22 of Bro1- and V-domains. Alix and HD-PTP, mammalian Bro1 family proteins, bind YP(X)nL (n = 1 23 \sim 3) motifs in their target proteins through their V domains. In Alix, the Phe residue, which is located 24 in the hydrophobic groove of the V domain, is critical for binding to the YP(X)nL motif. Although 25 the overall sequences are not highly conserved between mammalian and yeast V domains, we show 26 that the conserved Phe residue in the yeast Bro1 V domain is important for binding to its 27 YP(X)nL-containing target protein, Rfu1. Furthermore, we show that Rim20 binds to its target 28 protein Rim101 through the interaction between the V domain of Rim20 and the YPIKL motif of 29 Rim101. The mutation of either the critical Phe residue in the Rim20 V domain or the YPIKL motif 30 of Rim101 affected the Rim20-mediated processing of Rim101. These results suggest that the 31 interactions between V domains and YP(X)nL motif-containing proteins are conserved from yeast to 32 mammalian cells. Moreover, the specificities of each V domain to their target protein suggest that 33 unidentified elements determine the binding specificity.

34

35 Introduction

36 Yeast Bro1 belongs to a family of related proteins that share a common architecture 37 comprising an N-terminal Bro1 homology domain and a following V domain (Fig. 1A). Bro1/Vps31 38 was originally isolated as one of the vacuolar protein targeting mutants and later classified as class E 39 vps mutants (1, 2). Bro1 is reported to function as an accessory factor for Endosomal Sorting 40 Complex Required for Transport (ESCRT) apparatus in the multivesicular bodies (MVB) pathway (3, 41 4). The ESCRT apparatus, which comprises four complexes (ESCRT-0, I, II, and III), is responsible 42 for the sorting of ubiquitinated membrane proteins into MVBs for degradation in the 43 lysosome/vacuole (5). Bro1 is directed to endosomes by the association of the Bro1 domain with 44 ESCRT-III subunit Snf7 (6), and was reported to regulate the membrane-scission activity of

45 ESCRT-III (7). Moreover, Bro1 binds to the deubiquitinating enzyme Doa4 through its C-terminus 46 region, recruits Doa4 to endosomes, and activates Doa4 (8, 9). Doa4 plays a role in the recovery of 47 ubiquitins from ubiquitinated cargoes just prior to the invagination of the cargo protein-enriched 48 membranes; therefore, it maintains cellular ubiquitin homeostasis in yeast (10). Intriguingly, we 49 revealed that Bro1 also binds to Rfu1 (a regulator for free ubiquitin chains) through its V domain and 50 recruits Rfu1 to endosomes (11). Rfu1 also has a function to maintain ubiquitin homeostasis by 51 inhibiting Doa4 activity (12). Bro1 has an additional region called the Pro-rich region (PRR), which 52 was reported to bind Rsp5, a major ubiquitin ligase for ubiquitinating cargo proteins (13). 53 Rim20, another Bro1 family protein in yeast, functions in the pH-responsive pathway (14, 54 15). The pathway has been intensively studied in the fungi Aspergillus nidulans and the yeast 55 Saccharomyces cerevisiae (16). In this pathway, Rim101, a transcription factor, is processed through 56 the proteolytic removal of its C-terminal region in response to alkaline pH. The processed Rim101 57 then regulates the expression of alkaline-responsive genes, resulting in the adaptation to alkaline 58 conditions (17). During this activation process, Rim20 is required for the proteolytic cleavage of 59 Rim101 along with other factors such as Rim13, Rim9, Rim21, Dfg16, Rim8, and several ESCRT-I, 60 -II, and -III factors (18-20). Rim20 appears to function as an adaptor by directly binding to Rim101 61 and several ESCRT components such as Snf7 (18, 19). Recently, it was reported that the events of 62 the Rim101 pathway, after alkaline conditions, occurred on the plasma membrane (21, 22). 63 The mammalian Bro1 homolog, apoptosis-linked gene 2 interacting protein X (Alix), 64 functions in ESCRT-mediated budding of enveloped viruses and membrane abscission in cytokinesis 65 (3, 5). During the process of virus budding, cellular ESCRT machineries are hijacked by the viruses 66 to facilitate their release from the cell membrane. Like Bro1, Alix has three main domains, Bro1, V, 67 and PRR. The PRR of Alix was shown to directly bind multiple proteins such as the Tsg101 (yeast

68 Vps23) or CEP55 (23, 24). In addition, PRR keeps Alix in an autoinhibited conformation (25, 26).

69 Although Alix has not been reported to function in the sorting of ubiquitinated cargoes such as the

EGF Receptor, His-domain protein tyrosine phosphatase (HD-PTP), another member of Bro1 family
proteins is required for EGF receptor sorting to the MVB (27).

72 The Alix V domain is about 320 amino acids (aa) long, forming the structure of two 73 trihelical bundles taking the shape of the letter V. It has been studied extensively for its interaction 74 with YP(X)nL motif-containing viral and cellular proteins (28, 29). The Alix V domain binds to the 75 YP(X)nL motif-containing late domains of retrovirus such as HIV-1, equine infectious anemia virus 76 (EIAV), and Ebola, and appears to play an important role in virus budding (30, 31). A hydrophobic 77 pocket on the second arm of Alix V was identified as a region for binding to the YP(X)nL motif 78 peptide (28, 29). Particularly, the Phe residue in the pocket plays a critical role in the interaction with 79 YP(X)nL motif, and F676D is an inactivation mutation of Alix V in binding. As for cellular proteins, 80 Alix V was shown to bind to the YPX(3)L motif of G-protein coupled receptor, protease-activated 81 receptor 1 (PAR1), to mediate the ubiquitin-independent sorting of PAR1 (32). In yeast, Bro1 and 82 Rim20 V domains were shown to have a very similar structure to the Alix V domain, albeit they have 83 a low sequence similarity(33). Recently, the V domains of Alix, HD-PTP, Bro1, and Rim20 are 84 shown to bind to ubiquitins, particularly to K63-linked ubiquitin chains (33-35), leading to the 85 proposal that V domains are ubiquitin receptors. The ubiquitin binding regions within the V domains 86 were reported to be different from the YP(X)nL binding region.

87 Because amino acid sequences are not highly conserved between Alix and yeast V domains 88 (11–13% amino acid identity for Alix and Bro1 V domains, Sup Fig. 1), the interaction of the yeast V 89 domain with a YP(X)nL motif-containing protein is overlooked (33). Recently, we showed a direct 90 interaction between a region containing the YPEL motif of Rfu1 and the V domain of Bro1 (11). In 91 this study, we observed that a region containing a critical Phe residue that is reported to bind to 92 YP(X)nL motif of the target proteins in Alix is relatively conserved in the V domains of Alix, 93 HD-PTP, Bro1, and Rim20 (Fig. 1). Therefore, we tested whether the yeast V domain's interaction 94 with YP(X)nL motif-containing target proteins could be analogous to mammalian V domains. We

- examined the interactions between the Bro1 V–Rfu1 and Rim20 V–Rim101 by focusing on the
 conserved Phe residue in the V domains of Bro1 and Rim20.
- 97

98 Experimental Procedures

99 Media. Yeast strains were grown in YPAD medium (1% yeast extract, 2% Bacto–Peptone, 2%

100 glucose, and 0.002% adenine), in synthetic complete medium (SD; 0.67% yeast nitrogen base and

101 2% glucose supplemented with amino acids) or synthetic casamino medium (SC; 0.67% yeast

102 nitrogen base, 2% glucose, and 0.5% casamino acids). If necessary, tryptophan, uracil, or adenine

103 was added. For microscopy studies, 0.02% adenine was added.

104

105 Yeast strains and plasmids. A list of the yeast strains and plasmids used in this study are provided

106 in Sup. Tables 1 and 2, respectively. Plasmid pGST2-Alix (360–702) was obtained from Addgene.

107 Plasmid expressing N-terminally myc-tagged Rim20 under the control of a RIM20 promoter was

108 created as follows. Two kinds of DNA fragments, F and B, were amplified using a RIM20 plasmid as

109 a template and two sets of primers, RIM20-up875-BamHI,

110 AATTAGGATCCACGTTGTATATTTTCAATCTGGAAAGTAA and RIM20-BtsI-AS,

111 GTTCACTCATGTCACACTGCCTGGATCTCC; RIM20–BtsI–Myc-sense,

112 AATTGCAGTGTGACATGGAACAAAAGCTTATTTCTGAAGAAGACTTGATGAGTGAACTGC

113 TTGCCATTCC and RIM20–Down–XhoI-AS,

114 AATTCTCGAGCTGTTGTCTAAAGGCGAAACTACGATGAAG, respectively. The obtained F and

115 B fragments were cut with BamHI–BtsI and BtsI–XhoI, respectively. The two fragments were ligated

116 to the BamHI–XhoI vector portion of pRS315.

117

118 Immunoblotting. Preparation of whole-cell extracts and immunoblot analysis were performed as

119 previously described (36). In western blotting, blots were incubated with a mouse anti-GFP

120	monoclonal antibody (Roche), an anti-HA antibody (HA.11, COVANCE), or an anti-yeast PGK
121	antibody (Molecular Probes, Eugene, OR), followed by horseradish peroxidase (HRP)-conjugated
122	anti-mouse IgG (#NA931V, Amersham) and then visualized using an ECL-plus reagent (Amersham).
123	To detect GST, an HRP-conjugated anti-GST antibody (Wako) was used. A rabbit anti-yeast Bro1
124	antibody was described previously (11).
125	
126	Recombinant protein purification. MBP-Rfu1 and MBP-fusions of the Rfu1 mutants were purified
127	as previously described (12). Recombinant GST, GST-Bro1, or the various GST-Bro1 mutants were
128	purified using glutathione chromatography as recommended by the manufacturer (GE Healthcare).
129	Recombinant proteins were eluted with 20 mM glutathione, 50 mM Tris HCl (pH 8.0), and 2 mM
130	DTT; dialyzed against 50 mM Tris HCl (pH 7.5), 100 mM NaCl, and 10% glycerol; and then stored
131	at -80°C.
132	
133	In vitro binding between various MBP-fused proteins and GST-fused proteins. Binding
133 134	<i>In vitro</i> binding between various MBP-fused proteins and GST-fused proteins. Binding experiments were performed as previously described (11).
133 134 135	<i>In vitro</i> binding between various MBP-fused proteins and GST-fused proteins. Binding experiments were performed as previously described (11).
133 134 135 136	 In vitro binding between various MBP-fused proteins and GST-fused proteins. Binding experiments were performed as previously described (11). Microscopy. FM4-64 (Molecular Probes, Inc.) staining was performed as previously described (37).
 133 134 135 136 137 	 In vitro binding between various MBP-fused proteins and GST-fused proteins. Binding experiments were performed as previously described (11). Microscopy. FM4-64 (Molecular Probes, Inc.) staining was performed as previously described (37). Cells were imaged at room temperature using a confocal microscope (LSM780; Carl Zeiss) equipped
 133 134 135 136 137 138 	 <i>In vitro</i> binding between various MBP-fused proteins and GST-fused proteins. Binding experiments were performed as previously described (11). Microscopy. FM4-64 (Molecular Probes, Inc.) staining was performed as previously described (37). Cells were imaged at room temperature using a confocal microscope (LSM780; Carl Zeiss) equipped with an αPlan-Apochromat 100× oil objective lens. Images were processed using the LSM image
 133 134 135 136 137 138 139 	 <i>In vitro</i> binding between various MBP-fused proteins and GST-fused proteins. Binding experiments were performed as previously described (11). Microscopy. FM4-64 (Molecular Probes, Inc.) staining was performed as previously described (37). Cells were imaged at room temperature using a confocal microscope (LSM780; Carl Zeiss) equipped with an αPlan-Apochromat 100× oil objective lens. Images were processed using the LSM image browser, and the brightness and contrast were adjusted using Adobe Photoshop CS4.
 133 134 135 136 137 138 139 140 	 <i>In vitro</i> binding between various MBP-fused proteins and GST-fused proteins. Binding experiments were performed as previously described (11). Microscopy. FM4-64 (Molecular Probes, Inc.) staining was performed as previously described (37). Cells were imaged at room temperature using a confocal microscope (LSM780; Carl Zeiss) equipped with an αPlan-Apochromat 100× oil objective lens. Images were processed using the LSM image browser, and the brightness and contrast were adjusted using Adobe Photoshop CS4.
 133 134 135 136 137 138 139 140 141 	In vitro binding between various MBP-fused proteins and GST-fused proteins. Binding experiments were performed as previously described (11). Microscopy. FM4-64 (Molecular Probes, Inc.) staining was performed as previously described (37). Cells were imaged at room temperature using a confocal microscope (LSM780; Carl Zeiss) equipped with an αPlan-Apochromat 100× oil objective lens. Images were processed using the LSM image browser, and the brightness and contrast were adjusted using Adobe Photoshop CS4. Detection of HA–Rim101. Logarithmically growing cells in SC-Ura Leu or SC-Ura (pH 4.0)
 133 134 135 136 137 138 139 140 141 142 	In vitro binding between various MBP-fused proteins and GST-fused proteins. Binding experiments were performed as previously described (11). Microscopy. FM4-64 (Molecular Probes, Inc.) staining was performed as previously described (37). Cells were imaged at room temperature using a confocal microscope (LSM780; Carl Zeiss) equipped with an αPlan-Apochromat 100× oil objective lens. Images were processed using the LSM image browser, and the brightness and contrast were adjusted using Adobe Photoshop CS4. Detection of HA–Rim101. Logarithmically growing cells in SC-Ura Leu or SC-Ura (pH 4.0) medium were harvested by centrifugation and re-suspended in the same medium, SC-Ura Leu or
 133 134 135 136 137 138 139 140 141 142 143 	<i>In vitro</i> binding between various MBP-fused proteins and GST-fused proteins. Binding experiments were performed as previously described (11). Microscopy. FM4-64 (Molecular Probes, Inc.) staining was performed as previously described (37). Cells were imaged at room temperature using a confocal microscope (LSM780; Carl Zeiss) equipped with an αPlan-Apochromat 100× oil objective lens. Images were processed using the LSM image browser, and the brightness and contrast were adjusted using Adobe Photoshop CS4. Detection of HA–Rim101. Logarithmically growing cells in SC-Ura Leu or SC-Ura (pH 4.0) medium were harvested by centrifugation and re-suspended in the same medium, SC-Ura Leu or SC-Ura (pH 8.0). After incubating for 20 min at 30°C, trichloroacetic acid (TCA) was added to make
 133 134 135 136 137 138 139 140 141 142 143 144 	<i>In vitro</i> binding between various MBP-fused proteins and GST-fused proteins. Binding experiments were performed as previously described (11). Microscopy. FM4-64 (Molecular Probes, Inc.) staining was performed as previously described (37). Cells were imaged at room temperature using a confocal microscope (LSM780; Carl Zeiss) equipped with an αPlan-Apochromat 100× oil objective lens. Images were processed using the LSM image browser, and the brightness and contrast were adjusted using Adobe Photoshop CS4. Detection of HA-Rim101. Logarithmically growing cells in SC-Ura Leu or SC-Ura (pH 4.0) medium were harvested by centrifugation and re-suspended in the same medium, SC-Ura Leu or SC-Ura (pH 8.0). After incubating for 20 min at 30°C, trichloroacetic acid (TCA) was added to make a final concentration of 6% and the mixture was kept on ice for 20 min. Cells collected by

145 centrifugation were suspended in a urea buffer (50 mM Tris-HCl pH 7.5, 5 mM EDTA, 6 M urea, 146 1% SDS, 50 mM NaF, 1 mM phenylmethylsulfonyl fluoride) and were disrupted by vortexing with 147 glass beads. Obtained cell lysates were cleared by centrifugation and the total protein concentrations 148 were determined using the DC protein assay (Bio-Rad, Richmond, CA). The cell lysates were 149 incubated with a Laemmli SDS sample buffer at 65°C for 15 min and were subjected to SDS-PAGE 150 and western blotting. To detect HA-tagged Rim101 and Myc-tagged Rim20, membranes were 151 blocked with 1% skimmed milk and then immunoblotted with an anti-HA antibody (12CA5) or an 152 anti-myc antibody (9E10), respectively. The membranes were then treated with an anti-mouse IgG 153 secondary antibody conjugated with horseradish peroxidase (NA931; GE Healthcare) and developed 154 with ECL Prime (GE Healthcare). To detect actin, an anti-actin monoclonal antibody (C4; ICN, 155 Aurora, OH) and IRDye-conjugated anti-mouse IgG antibody (Rockland, Gilbertsville, PA) were 156 used. The signals were detected by using the infrared imaging system Odyssey (LICOR, Lincoln, 157 NE).

158

159 Results

160 Effect of Phe687 of Bro1 on the interaction with Rfu1. We noticed that the Phe residue and the 161 following Tyr as well as several neighboring residues were conserved around this region in Bro1 and 162 Rim20 V domains of *S. cerevisiae* and the Bro1 V domain of *Naumovozyma castellii* whose crystal 163 structure was resolved (33) (Fig. 1B). This suggests that this region in the V domains of Bro1 and 164 Rim20 may have similar functions as the Alix V domain.

In Bro1, Phe687 is the corresponding Phe residue. First, we examined the effect of the Phe 687 mutation in the Bro1 V domain for the binding of Rfu1 *in vitro* (Fig. 2A). In the previous work, we found that recombinant MBP–Rfu1 specifically bound to the recombinant GST-fused Bro1 V domain (11). We observed that the binding activity of GST–Bro1-V (F687A) to MBP–Rfu1 was drastically reduced (Fig. 2A). Additionally, we examined the binding ability of mutants whose

mutations were closely located to F687; F677A, D680A, and L681A. The binding of Bro1 V
(F677A) was moderately reduced, but not as much as that of F687A Bro1 V and D680A. L681A
double mutations had no effects.

Next, we investigated whether the Bro1 F687 residue functioned in the interaction with
Rfu1 *in vivo*. Immunoprecipitation analysis, using lysates from cells expressing Rfu1-3 × Flag plus
myc-tagged Bro1 or myc-tagged Bro1 (F687A), were performed using anti-Flag. Myc-tagged Bro1,
but not myc-tagged Bro1 (F687A), was specifically precipitated with Rfu1-3 × Flag (Fig. 2B). These
results indicated that Bro1 Phe687 played a critical role in the Bro1–Rfu1 interaction both *in vitro*and *in vivo*.

179 The Rfu1 localization at endosomes largely depends on Bro1; Rfu1–GFP is mainly diffusive 180 in the $\Delta brol$ mutant, and the Rful mutant in which the YPEL motif was changed to AAEL showed 181 impaired endosomal localization (11). We, therefore, examined the effect of the F687A mutation on 182 the localization of Rfu1–GFP fusions in yeast. First, we found that Bro1–GFP and Bro1 183 (F687A)–GFP were similarly observed, mainly at the class E compartments in $\Delta vps4\Delta brol$ cells 184 (data not shown). Next, the localization of Rfu1–GFP expressed under the *RFU1* promoter was 185 examined in $\Delta rfu1 \Delta vps4 \Delta bro1$ cells expressing either a wild-type or F687A Bro1. Rfu1–GFP 186 fluorescence was present at foci that overlapped with FM4-64 stained class E compartments in 187 Bro1-expressing $\Delta vps4\Delta rfu1$ cells (Fig. 3A, B). In contrast, the localization of Rfu1–GFP at class E 188 compartments was reduced in Bro1 (F687A) expressing cells. The accumulation of Rfu1–GFP was 189 slightly reduced, probably due to its impaired binding to Bro1 (F687A) because a reduction in the 190 accumulation of Rfu1 was previously observed in the $\Delta bro1$ mutant (Fig. 3C) (11). 191 Rim20 and Rim101 interaction through the V domain of Rim20 and the YPKIL motif in 192 **Rim101**. Next, we looked for different interactions between V domains and YP(X)nL193 motif-containing proteins. Rim20, another V-domain-containing protein, is required for Rim101p 194 processing by direct binding to Rim101 (14, 38). Xu and Mitchell showed that the C-terminus region 195 containing PEST-like sequences in Rim101 was sufficient for binding to Rim20 (14). Within the

196 C-terminus region of Rim101, there is a YPKIL motif close to the C-terminus end that matches with

197 the consensus YP(X)nL (n = 1–3) motif (39). This motif is located downstream of the cleavage site

of Rim101. In addition, about the C-terminal half (353–661aa) of Rim20, that corresponds to its

199 V-domain, was reported to bind to Rim101 (14).

200 To test whether the Rim101–Rim20 interaction was mediated by the Rim20's V-domain and 201 the Rim101's YPKIL motif, we assessed the interaction in the *in vitro* binding experiment. We made 202 recombinant MBP-Rim101-C, a fusion of MBP with the 125 aa of the C-terminal region of Rim101, 203 and checked whether MBP-Rim101-C bound to recombinant GST-Rim20 V (330-661aa) in vitro 204 (Fig. 4). As expected, we observed an efficient interaction between the two proteins (Fig. 4, lane 2). 205 When the conserved Rim20 Phe623 was substituted by Ala in GST-Rim20 V, the binding ability was 206 significantly lost (Fig. 4, lane 3). Moreover, we observed that the interaction between GST–Rim20V 207 and MBP-Rim101-C (Y620A, P621A), in which the YPKIL motif was changed to AAKIL, was 208 significantly lost (Fig. 4, lane 5). These results suggest that the interaction between Rim20 and 209 Rim101 is mediated by the Rim20 V domain and the YPKIL motif of Rim101, and the conserved 210 Phe in the Rim20V is critical for the interaction.

211 Next, we investigated the role of Phe623 in the Rim20 V domain by examining the 212 processing of Rim101 in vivo (Fig. 5). N-terminally myc-tagged or non-tagged Rim20 or Rim20 213 (F623A) were expressed in the $\Delta rim20$ mutant together with HA-tagged Rim101. Under acidic 214 conditions (pH 4), the intact full length of Rim101 is a major form; whereas, under alkaline 215 conditions (pH 8), Rim101 undergoes proteolytic processing that removes the C-terminal region of 216 Rim101 (15). As previously reported (14), the processing was defective in the $\Delta rim20$ mutant. When 217 wild-type Rim20 or myc-tagged Rim20 were introduced to the $\Delta rim20$ mutant, Rim101 processing 218 became normal. In contrast, Rim101 processing was defective in the $\Delta rim20$ mutant expressing 219 Rim20 (F623A) or myc-tagged Rim20 (F623A). We observed that the amino acid change of F623A

did not affect the stability of myc-Rim20 (F623A), and its level was similar to that of myc-Rim20
(Fig 5 A).

222 In addition, we investigated the effect of the YPKIL mutation of Rim101 on its processing 223 by expressing HA-Rim101 or HA-Rim101 (Y620A, P621A) in $\Delta rim101$ cells, and observed that 224 proteolytic processing was defective in cells expressing Rim101 (Y620A, P621A) (Fig. 5B). Because 225 the mutants in the Rim101 pathway show sensitivity to LiCl-containing medium (20, 40), LiCl 226 sensitivity was examined (Fig. 5C). Cells expressing Rim101 (Y620A, P621A) showed a marginal 227 but significant sensitivity, indicating that the active form of Rim101 was not efficiently produced 228 from Rim101 (Y620A, P621A). These results indicated that the interaction between the Rim20 V 229 domain and the YPKIL motif of Rim101 was important for their biological function. 230 Specificity of the V domain–YP(X)nL interaction. The V domains of Bro1 and Rim20 are 231 structurally similar; however, their physiological roles have been reported to be different. It was 232 reported that the $\Delta bro1$ mutant showed normal Rim101 processing (14), and the involvement of 233 Rim20 in MVB sorting has not been reported. We therefore suspected that there were specificities for 234 their interactions. To test the idea, we examined whether Rful bound to the Rim20 V domain or 235 whether Rim101 bound to Bro1 V (Fig. 6). We observed that under the conditions that MBP–Rfu1 236 bound to Bro1 V, MBP-Rfu1 did not bind Rim20 or the Alix V domains. Similarly, MBP-Rim101-C 237 bound to Rim20 V but did not bind to Bro1-V or Alix V. These results suggest that there are more 238 unidentified determinants for the specific interaction between V domains and YPX(n)L motifs. 239

241 Discussion

242 In this study, we showed that the conserved Phe residue in the V domains of yeast Bro1 and Rim20 243 plays an important role in binding to the YP(X)nL-motif of their target proteins, Rfu1 and Rim101. 244 The results suggest that the yeast Bro1 and Rim20 V domains bind to their target proteins in a similar 245 way as mammalian Alix V does, indicating that V-domains are YP(X)nL-motif binding domains 246 from yeast to mammals. Therefore, results from yeast Bro1 family V domain studies will not only 247 contribute to our understanding of the cellular events in yeast, but may also be informative in our 248 understanding of the interactions between mammalian Bro1 family proteins and their 249 YP(X)nL-containing target proteins such as virus proteins. 250 In addition, we showed that there are specificities of each V domain with its target protein; 251 the C-terminal region of Rim101 specifically binds to the Rim20 V domain, but not to the Bro1 and 252 Alix V domains. Likewise, Rfu1 only binds to Bro1 V but not to Rim20 V domains in our in vitro 253 assay. These results suggest that there must be more unidentified sequence or structural determinants 254 of the interaction between V domains and their cognate YP(X)nL motif-containing partners (e.g., 255 particular sequence or structures). Indeed, there are many proteins that possess YP(X)nL motifs in a 256 cell, but only a subset of them seem to bind to the V domains. For example, the YPFL motif of Doa4 257 does not bind to the Bro1 V domain, instead this motif binds to the C-terminal region of Bro1 (8). 258 Although we do not have any hints for the determinants, an intensive mutagenesis approach may 259 give us a clue to understand the nature of the specificity. In any case, a structural analysis of the Bro1 260 V domain-YPEL peptide or the Rim20 V domain-YPKIL peptide will be needed to define the precise 261 mechanism of the interaction. Moreover, finding more Bro1 V domain-binding proteins and 262 comparing their sequences or structures with those of Rful or Alix V binding proteins may give us 263 some ideas of the specificities.

Bro1 is required for Rfu1 to function at endosomes (11). Rfu1 is involved in ubiquitin homeostasis because in $\Delta rfu1$ cells, monomer ubiquitin is increased and unanchored ubiquitin chains

or small ubiquitin species decreased (11, 12). We expected that $\Delta bro1$ cells expressing Bro1 (F687A) would show a similar ubiquitin profile to that of the $\Delta rfu1$ mutant, but they did not show obvious aberrant profiles (data not shown). The reason was unknown, but it may be that the residual binding of Rfu1 to Bro1 (F687A) *in vivo* is enough to support ubiquitin homeostasis, although other possibilities cannot be excluded.

Alix has been reported to have a flexible structure (25, 26). The PRR was reported to fold back and inhibit V domain binding to viral proteins. The V domain appears to take a closed conformation in the presence of PRR and an open conformation in the absence of the PRR. Alix was also reported to have a dimer structure via its V domain (41). Moreover, binding of ubiquitins to Alix V was shown to induce oligomerisation of the V domain (35). Thus, conformational change of Bro1 family proteins as a whole as well as its V domain seem to be regulated in complex ways in a cell, and the Bro1 family studies using tractable yeasts would be suitable to reveal such complex

278 mechanisms.

279

280

281 Acknowledgements

This work was supported by JSPS KAKENHI Grant Numbers 26440070 (to Y. K.) and 25291042 (to
T. M.).

284

285 Figure 1. Bro1 family proteins

A. Schematic organization of Bro1, Rim20, Alix, and HD-PTP. Bro1, V domain, and PRR (proline

rich region) are indicated. PTP, phosphatase domain. B. Conservation of putative YP(X)nL binding

regions of the V domains of Saccharomyces cerevisiae (sc) Bro1, Naumovozyma castellii (nc) Bro1,

289 Rim20, human (hs) Alix, and HD-PTP. Alignments of scBro1 vs. ncBro1, scRim20 vs. Alix, and

290 HD-PTP vs. Alix were generated by Clustal W. Alignments of nsBro1 and hsAlix were made by

structural comparisons using DaliLite. These alignments were then assembled. Arrow indicates the critical Phe residue in the Alix V domain and the corresponding Phe in other Bro1 family proteins.

Figure 2. Impaired binding of Bro1 (F687A) to Rfu1

A. Impaired binding of Bro1 V (F687A) to MBP–Rfu1 *in vitro*. MBP or MBP–Rfu1 were mixed with GST, GST–Bro1 V, or the noted GST–Bro1 V mutants and the proteins were isolated with amylose resin. Samples were examined by immunoblot analysis using anti-GST (top panel) and anti-MBP antibodies (bottom panel). B. Impaired association of Bro1 (F687A) to Rfu1-3 × Flag *in vivo*. Lysates of $\Delta bro1$ cells (lane1), or $\Delta bro1 RFU1$ -3xF cells harboring a plasmid expressing C-terminally myc-tagged Bro1 or Bro1 (F687A) (lanes 2 and 3) were immunoprecipitated with anti-Flag. The resulting immune-complexes (IP) were analyzed by immunoblot using anti-Flag and

anti-myc.

303

304 Figure 3. Impaired endosome localization of Rfu1–GFP in Bro1 (F687A)-expressing cells

305 A. GFP and FM4-64 fluorescence and DIC microscopy of Rfu1–GFP in $\Delta vps4\Delta rfu1\Delta bro1$ cells

306 expressing Bro1 or Bro1 (F687A). Arrowheads indicate the class E compartments. Scale bar, 5 μm

307 for upper panels, 2 µm for lower panels. B. Quantification of Rfu1–GFP foci in A. Cells containing

308 GFP foci around the vacuolar membrane were counted (n = 50 cells in each experiment), and mean

309 values of three independent experiments are shown. Standard errors (SE) are shown as bars. C.

310 Rfu1–GFP expression as determined by the anti-GFP immunoblot analysis in (A). Anti-GFP

311 immunoblot (top), anti-Bro1 immunoblot (middle), and anti-phosphoglycerate kinase (PGK)

312 immunoblot (bottom), a control for protein loading.

313

Figure 4. Binding of the Rim20 V domain to the Rim101 YP(X)nL motif in vitro

315 MBP or MBP–Rim101-C or MBP–Rim101-C (Y620A, P621A) were incubated with GST,

316 GST–Rim20 V, or GST–Rim20-V (F623A), and the proteins were isolated with amylose resin. GST,

317 GST–Rim20V, or GST–Rim20V (F623A) are indicated by arrows. Anti-GST immunoblot for pull

down samples (top), anti-MBP immunoblot for pull down samples (middle), and anti-GST

- 319 immunoblot for input (bottom).
- 320

321 Figure 5. Effects of Rim101 or Rim20 mutation on HA-Rim101 processing

322 A. Effects of Rim20 (F623A) mutation on HA-Rim101 processing. HA-tagged Rim101 was

323 expressed in $\Delta rim20$ cells harboring a vector or expressing Rim20, Rim20 (F623A), myc-tagged

Rim20 or myc-tagged Rim20 (F623A), at the indicated pH of 4 or 8. Processed (p.f.) and

325 unprocessed forms (u.f.) of HA-Rim101 are indicated. Anti-HA immunoblot analysis (top), anti-myc

immunoblot for myc-tagged Rim20 or Rim20 (F623A) (middle), and anti-actin blot, used as a

327 loading control (bottom). B. Effect of HA-Rim101 (AAKIL) mutation on processing. Δ*rim101* cells

harboring a vector or plasmids expressing HA-Rim101 or HA-Rim101 (AAKIL) were tested. C. Li

329 sensitivity. Cells were diluted and spotted on SC-Ura plates and YPD containing 0.3M LiCl and

- incubated for 3 days.
- 331

332 Figure 6. V domain specificity against YP(X)nL motif-containing proteins

333 MBP, MBP-Rfu1, or MBP-Rim101 were incubated with GST, GST-Bro1V, GST-Rim20 V, or

334 GST-Alix V, and the proteins were isolated with amylase resin. GST-tagged samples were examined

by immunoblot analysis using anti-MBP and anti-GST antibodies. Anti-GST immunoblot for

336 pull-down samples (top), GST-Rim20 V and GST-Bro1V of pull-down samples are indicated by

arrows. Anti-MBP immunoblot for pull down samples (middle), anti-GST immunoblot for input

338 (bottom).

339

340 References

1. Robinson JS, Klionsky DJ, Banta LM, Emr SD. 1988. Protein sorting in Saccharomyces

342 cerevisiae: isolation of mutants defective in the delivery and processing of multiple vacuolar 343 hydrolases. Mol Cell Biol 8:4936-4948. 344 2. Raymond CK, Howald-Stevenson I, Vater CA, Stevens TH. 1992. Morphological classification of 345 the yeast vacuolar protein sorting mutants: evidence for a prevacuolar compartment in class E vps 346 mutants. Mol Biol Cell 3:1389-1402. 347 Bissig C, Gruenberg J. 2014. ALIX and the multivesicular endosome: ALIX in Wonderland. Trends 3. 348 Cell Biol 24:19-25. 349 4. Odorizzi G, Katzmann DJ, Babst M, Audhya A, Emr SD. 2003. Bro1 is an endosome-associated 350 protein that functions in the MVB pathway in Saccharomyces cerevisiae. J Cell Sci 351 116:1893-1903. 352 5. Henne WM, Buchkovich NJ, Emr SD. 2011. The ESCRT pathway. Dev Cell 21:77-91. 353 6. Kim J, Sitaraman S, Hierro A, Beach BM, Odorizzi G, Hurley JH. 2005. Structural basis for 354 endosomal targeting by the Bro1 domain. Dev Cell 8:937-947. 355 7. Wemmer M, Azmi I, West M, Davies B, Katzmann D, Odorizzi G. 2011. Bro1 binding to Snf7 356 regulates ESCRT-III membrane scission activity in yeast. J Cell Biol 192:295-306. 357 8. Richter C, West M, Odorizzi G. 2007. Dual mechanisms specify Doa4-mediated deubiquitination 358 at multivesicular bodies. EMBO J 26:2454-2464. 359 Luhtala N, Odorizzi G. 2004. Bro1 coordinates deubiquitination in the multivesicular body 9. 360 pathway by recruiting Doa4 to endosomes. J Cell Biol 166:717-729. 361 10. Swaminathan S, Amerik AY, Hochstrasser M. 1999. The Doa4 deubiquitinating enzyme is 362 required for ubiquitin homeostasis in yeast. Mol Biol Cell 10:2583-2594. 363 11. Kimura Y, Kawawaki J, Kakiyama Y, Shimoda A, Tanaka K. 2014. The ESCRT-III adaptor protein 364 Brol controls functions of regulator for free ubiquitin chains 1 (Rful) in ubiquitin homeostasis. J 365 Biol Chem 289:21760-21769. 366 12.Kimura Y, Yashiroda H, Kudo T, Koitabashi S, Murata S, Kakizuka A, Tanaka K. 2009. An 367 inhibitor of a deubiquitinating enzyme regulates ubiquitin homeostasis. Cell 137:549-559. 368 13.Nikko E, Andre B. 2007. Split-ubiquitin two-hybrid assay to analyze protein-protein interactions 369 at the endosome: application to Saccharomyces cerevisiae Bro1 interacting with ESCRT 370 complexes, the Doa4 ubiquitin hydrolase, and the Rsp5 ubiquitin ligase. Eukaryot Cell 371 **6**:1266-1277. 372 14. Xu W, Mitchell AP. 2001. Yeast PalA/AIP1/Alix homolog Rim20p associates with a PEST-like 373 region and is required for its proteolytic cleavage. J Bacteriol 183:6917-6923. 374 15. Li W, Mitchell AP. 1997. Proteolytic activation of Rim1p, a positive regulator of yeast sporulation 375 and invasive growth. Genetics 145:63-73. 376 Penalva MA, Lucena-Agell D, Arst HN, Jr. 2014. Liaison alcaline: Pals entice non-endosomal 16. 377 ESCRTs to the plasma membrane for pH signaling. Curr Opin Microbiol 22:49-59. 378 17. Maeda T. 2012. The signaling mechanism of ambient pH sensing and adaptation in yeast and 379 fungi. FEBS J 279:1407-1413.

- Boysen JH, Mitchell AP. 2006. Control of Bro1-domain protein Rim20 localization by external pH,
 ESCRT machinery, and the Saccharomyces cerevisiae Rim101 pathway. Mol Biol Cell
 17:1344-1353.
- 383 19. Xu W, Smith FJ, Jr., Subaran R, Mitchell AP. 2004. Multivesicular body-ESCRT components
 384 function in pH response regulation in Saccharomyces cerevisiae and Candida albicans. Mol Biol
 385 Cell 15:5528-5537.
- 386 20. Hayashi M, Fukuzawa T, Sorimachi H, Maeda T. 2005. Constitutive activation of the
 387 pH-responsive Rim101 pathway in yeast mutants defective in late steps of the MVB/ESCRT
 388 pathway. Mol Cell Biol 25:9478-9490.
- 389 21. Obara K, Kihara A. 2014. Signaling events of the Rim101 pathway occur at the plasma membrane
 390 in a ubiquitination-dependent manner. Mol Cell Biol 34:3525-3534.
- 391 22. Galindo A, Calcagno-Pizarelli AM, Arst HN, Jr., Penalva MA. 2012. An ordered pathway for the
 392 assembly of fungal ESCRT-containing ambient pH signalling complexes at the plasma membrane.
 393 J Cell Sci 125:1784-1795.
- von Schwedler UK, Stuchell M, Muller B, Ward DM, Chung HY, Morita E, Wang HE, Davis T, He
 GP, Cimbora DM, Scott A, Krausslich HG, Kaplan J, Morham SG, Sundquist WI. 2003. The
 protein network of HIV budding. Cell 114:701-713.
- Morita E, Sandrin V, Chung HY, Morham SG, Gygi SP, Rodesch CK, Sundquist WI. 2007. Human
 ESCRT and ALIX proteins interact with proteins of the midbody and function in cytokinesis.
 EMBO J 26:4215-4227.
- Zhou X, Si J, Corvera J, Gallick GE, Kuang J. 2010. Decoding the intrinsic mechanism that
 prohibits ALIX interaction with ESCRT and viral proteins. Biochem J 432:525-534.
- 26. Zhai Q, Landesman MB, Chung HY, Dierkers A, Jeffries CM, Trewhella J, Hill CP, Sundquist WI.
 2011. Activation of the retroviral budding factor ALIX. J Virol 85:9222-9226.
- 404 27. Doyotte A, Mironov A, McKenzie E, Woodman P. 2008. The Bro1-related protein HD-PTP/PTPN23
 405 is required for endosomal cargo sorting and multivesicular body morphogenesis. Proc Natl Acad
 406 Sci U S A 105:6308-6313.
- 40728.Fisher RD, Chung HY, Zhai Q, Robinson H, Sundquist WI, Hill CP. 2007. Structural and408biochemical studies of ALIX/AIP1 and its role in retrovirus budding. Cell 128:841-852.
- 409 29. Lee S, Joshi A, Nagashima K, Freed EO, Hurley JH. 2007. Structural basis for viral late-domain
 410 binding to Alix. Nat Struct Mol Biol 14:194-199.
- 411 30. Han Z, Madara JJ, Liu Y, Liu W, Ruthel G, Freedman BD, Harty RN. 2015. ALIX Rescues
 412 Budding of a Double PTAP/PPEY L-Domain Deletion Mutant of Ebola VP40: A Role for ALIX in
 413 Ebola Virus Egress. J Infect Dis doi:10.1093/infdis/jiu838.
- 414 31. Votteler J, Sundquist WI. 2014. Virus Budding and the ESCRT Pathway. Cell Host Microbe
 415 14:232-241.
- 41632.Dores MR, Chen B, Lin H, Soh UJ, Paing MM, Montagne WA, Meerloo T, Trejo J. 2012. ALIX417binds a YPX(3)L motif of the GPCR PAR1 and mediates ubiquitin-independent ESCRT-III/MVB

418 sorting. J Cell Biol 197:407-419.

- 419 33. Pashkova N, Gakhar L, Winistorfer SC, Sunshine AB, Rich M, Dunham MJ, Yu L, Piper RC. 2013. 420 The Yeast Alix Homolog Bro1 Functions as a Ubiquitin Receptor for Protein Sorting into 421
- Multivesicular Endosomes. Dev Cell doi:S1534-5807(13)00218-9 [pii]
- 422 10.1016/j.devcel.2013.04.007.
- 423 Dowlatshahi DP, Sandrin V, Vivona S, Shaler TA, Kaiser SE, Melandri F, Sundquist WI, Kopito 34.424 **RR.** 2012. ALIX Is a Lys63-Specific Polyubiquitin Binding Protein that Functions in Retrovirus 425 Budding. Dev Cell 23:1247-1254.
- 426 35. Keren-Kaplan T, Attali I, Estrin M, Kuo LS, Farkash E, Jerabek-Willemsen M, Blutraich N, Artzi 427 S, Peri A, Freed EO, Wolfson HJ, Prag G. 2013. Structure-based in silico identification of 428 ubiquitin-binding domains provides insights into the ALIX-V:ubiquitin complex and retrovirus 429 budding. EMBO J 32:538-551.
- 430 36. Kimura Y, Koitabashi S, Kakizuka A, Fujita T. 2001. Initial process of polyglutamine aggregate 431 formation in vivo. Genes Cells 6:887-897.
- 432 37. Vida TA, Emr SD. 1995. A new vital stain for visualizing vacuolar membrane dynamics and 433 endocytosis in yeast. J Cell Biol 128:779-792.
- 434 38. Ito T, Chiba T, Ozawa R, Yoshida M, Hattori M, Sakaki Y. 2001. A comprehensive two-hybrid 435 analysis to explore the yeast protein interactome. Proc Natl Acad Sci U S A 98:4569-4574.
- 436 39. Vincent O, Rainbow L, Tilburn J, Arst HN, Jr., Penalva MA. 2003. YPXL/I is a protein interaction 437 motif recognized by aspergillus PalA and its human homologue, AIP1/Alix. Mol Cell Biol 438 23:1647-1655.
- 439 40. Lamb TM, Xu W, Diamond A, Mitchell AP. 2001. Alkaline response genes of Saccharomyces 440 cerevisiae and their relationship to the RIM101 pathway. J Biol Chem 276:1850-1856.
- 441 Pires R, Hartlieb B, Signor L, Schoehn G, Lata S, Roessle M, Moriscot C, Popov S, Hinz A, Jamin 41. 442 M, Boyer V, Sadoul R, Forest E, Svergun DI, Gottlinger HG, Weissenhorn W. 2009. A 443 crescent-shaped ALIX dimer targets ESCRT-III CHMP4 filaments. Structure 17:843-856.

444

Rfu1-GFP

HA-Rim101(AA)

-

.

Supplementary Table 1. Strains used in this study						
Name	Genotype	Source/Reference				
W303	MATα ade2-1 can1-100 his3-12.16 leu2-3.112 trp1-1 ura3-1	Rothstein				
Y795	W303α, Δrfu1::KanMX Δvps4::LEU2	Kimura et al., 2014				
Y1009	W303α; RFU1-3xFLAG::RFU1	This study				
Y1119	W303α; RFU1−3xFLAG::RFU1, ∆bro1::HIS3	This study				
Y1118	W303α, ∆rfu1::KanMX ∆vps4::LEU2, ∆bro1::HIS3	This study				
Y1140	W303α; ∆bro1::HIS3	This study				
rim101∆10	1MATa ura3−52 leu2∆1 his3∆l200 rim101::HIS3	This study				
FM201	MATa ura3-52 leu2 Δ 1 his3 Δ 200 trp1 Δ 63 rim20::HIS3	Hayashi et al, 2005				

Supplementary Table S2 Plasmids used in this study								
Plasmids	Name	Proteins expressed	Characteristis	Source/References				
pGCU10	GAL1p-GFP-tADH1	GFP	URA3, CEN	Kimata et al., (1997)				
E798	YCplac22-RFU1p-RFU1-GFP	Rfu1-GFP	TRP1, CEN	This study				
E744	pRFU1p-RFU1(1-200)-GFP	RFU1(1-200)-GFP	URA3, CEN	This study				
pMALP2X	MBP	MBP		·				
E382	MBP-Rfu1(1-200)	MBP-Rfu1(1-200)		Kimura et al., (2009)				
E827	MBP-RIM101(501-625)	MBP-Rim101(501-625)		This study				
	MBP-RIM101(501-625,Y620A, P621A)	MBP-Rim101(501-625,Y620A, P	621A)	This study				
pGEX4T-3		GST		GE				
E779	pGEX-Bro1-V Comp	GST-Bro1-V (361-720)		Kimura et al., (2014)				
E831	pGEX-Bro1-V Comp(F687A)	GST-Bro1-V (361-720)F687A		This study				
E829	pGEX-Bro1-V Comp(F677A)	GST-Bro1-V (361-720)F677A		This study				
E828	pGEX-Bro1-V Comp(D680A, L681A)	GST-Bro1-V (361-720)D680A, L	681A	This study				
E838	pGEX-Rim20 V	GST-Rim20-V(330-661)		This study				
E842	pGEX-Rim20 V(F623A)	GST-Rim20 V(330-661, F623A)		this study				
	pGST2-Alix (360-702)	GST-Alix V(360-702)		Addgene				
E813	pRS316-BRO1	Bro1	URA3, CEN	This study				
E837	pRS316-BRO1(F687A)	Bro1(F687A)	URA3, CEN	this study				
E846	pRS316-BRO1myc	Bro1-myc	URA3, CEN	This study				
E851	pRS316-BRO1(F687A)myc	Bro1(F687A)-myc	URA3, CEN	This study				
E847	pRS315-RIM20	Rim20	LEU2, CEN	This study				
E854	pRS315-RIM20(F623A)	Rim20(F623A)	LEU2, CEN	This study				
E848	pRS315-mycRIM20	Myc-Rim20	LEU2, CEN	This study				
E855	pRS315-mycRIM20(F623A)	Myc-Rim20(F623A)	LEU2, CEN	This study				
E860	LRIM101m1HApRS416	HA-RIm101	URA3	This study				
E861	pRS416-HA-RIM101(Y620A, P621A)	HA-RIm101(Y620A, P621A)	URA3	This study				