Self-assembled construction of a sheet-type coordination polymer bearing cationic M2L4cages: creation of channel-like space for removal of ClO4− and NO3− from aqueous solutions
Self-assembled Construction of a Sheet-type Coordination Polymer Bearing Cationic M$_2$L$_4$ Cages: Creation of a Channel-like Space for Removal of ClO$_4^-$ and NO$_3^-$ from Aqueous Solutions

Eriko Sone, a Moeko Sato, a Katsunori Yamanishi, b Chihiro Kamio, a Hiroyuki Takemoto a and Mitsuru Kondo a, b, c

Received 00th January 20xx, Accepted 00th January 20xx
DOI: 10.1039/x0xx00000x
www.rsc.org/

Treatment of CuCl$_2$ with a bis-benzenimazole-type ligand, p-bbiteb, afforded a new 2D coordination polymer bearing cationic Cu$_2$L$_4$ cages on the sheet framework. The regular arrangement of the cages created a channel-like space for anions. The compound removed ClO$_4^-$ and NO$_3^-$ from aqueous solutions by exchange with Cl$^-$ in the channels.

Fixation of functional discrete molecules on an infinite polymeric framework is a promising strategy for the preparation of polymer compounds that exhibit functionality due to the discrete molecular units. For example, many types of molecular catalysts are bound to 1D organic polymers as pendant units, yielding new polymeric materials that exhibit catalytic reactivity due to the discrete units. Furthermore, various heterogeneous catalysts, sensors, and molecular devices have been prepared by attaching discrete functional molecules to the surface of 2D organic films or inorganic layer compounds.

The treatment of metal ions with organic bridging ligands, using self-assembly processes, has afforded numerous coordination polymers with well-ordered structures. Although some coordination polymers incorporating polyoxometalate units in the frameworks have been synthesized, the preparation of coordination polymers bearing discrete molecules as pendant units is not well developed. The one-step construction of such functional structures by the simple treatment of one type of metal source and one type of organic ligand remains a challenging topic.

Flexible bis-imidazole- and bis-benzimidazole-type ligands, as illustrated in Scheme 1, have been used for the synthesis of coordination polymers and for discrete molecules such as dinuclear or trinuclear cage complexes. In this paper, these types of bridging ligands are designated as L. The type of compound obtained is largely dependent on the types of metal ions, counter anions, and reaction solvents used in the synthesis.

Scheme 1. Structures of m-bbiteb and p-bbiteb.

We have recently shown that [SO$_4^-$·Cu$_2$(m-bbiteb)$_4$]SO$_4$ (m-bbiteb = 1,3-bis(benzenimazol-1-yl)-2,4,6-trimethylbenzene) (Scheme 1) efficiently removes ClO$_4^-$ from aqueous solutions by exchange with the counter anion SO$_4^2$- located outside the cationic cage, despite this compound being insoluble in water. However, to achieve sufficient anion removal activity with [SO$_4^-$·Cu$_2$(m-bbiteb)$_4$]SO$_4$, it was necessary to grind the solid sample well, because the SO$_4^2$- embedded in the particle cannot be exchanged with ClO$_4^-$.

Following on from this, in the present study, we found that the water-insoluble cationic M$_2$L$_4$ cages are useful units for the removal of ClO$_4^-$ from aqueous solutions. We successfully synthesized and characterized a new water-insoluble coordination polymer [Cu(p-bbiteb)$_2$](Cl$_2$(H$_2$)$_2$·Cu$_2$(p-bbiteb)$_2$))[Cl$_4$·MeCN·H$_2$O]$_n$ (1) (p-bbiteb = 1,4-bis(benzenimazol-1-yl)-2,3,5,6-tetramethylbenzene) (Scheme 1), comprising the sheet framework and the cationic Cu$_2$L$_4$ cages that are bound to the sheet. The regular arrangement of the cationic Cu$_2$L$_4$ cages creates a channel-like space surrounded by the cationic cages. This paper reports on the new self-assembly synthesis and crystal structure of compound 1, and its NO$_3^-$ and ClO$_4^-$ removal functions based on the channel-like space.

Compound 1 was conveniently obtained by the treatment of CuCl$_2$ with p-bbiteb in the mixed solvent MeCN/H$_2$O. The compound crystallized in the tetragonal centric space groups (P4/n). The structure was confirmed by single-crystal X-ray
diffraction analysis (Fig. 1). The framework is composed of the sheet framework formulated as $[\text{Cu}(\text{p-bbiteit})_2]^{2+}$ and the cationic cages formulated as $[\text{Cl}-(\text{H}_2\text{O})_2\subset\text{Cu}_2(\text{p-bbiteit})_4]^{3+}$. The cages are bound to each CuII site in the sheet via a μ-Cl$^{-}$ bridge (vide infra). The structure of the cationic cage unit is shown in Fig. 1a. The two CuII centers are bridged by four syn-formed pb-bitet. The Cu(1) and Cu(2) are essentially in the π plane defined by the four nitrogen atoms in the coordination environments. The cage space is well isolated with a gap of about 1.8×1.3 Å2 between the p-bbiteit in the $[\text{Cu}(\text{p-bbiteit})_2]^{2+}$ framework (Fig. S1 in ESI†).

The cage contains a Cl$^{-}$ and two water molecules. The guest anion and water molecule do not exhibit strong interaction with the cage framework. The Cl$^{-}$ associates with the CuII site of the Cu$_2$L8 cage (Cu(1)–Cl(1) = 2.531 (3) Å). The distance is longer than the Cu–N distances (average 2.014 Å) in the coordination environment because of the Jahn–Teller effect. The Cl$^{-}$ also associates with hydrogen atoms of the imidazole ring of the p-bitet (Cl(1)–H(1) = 2.882 Å) and water molecules (Cl(1)–O(1) = 3.026 (8) Å). The water molecule is disordered at the four crystallographic equivalent positions (Fig. S1a in the ESI†). Fig. 1b shows a structure of the sheet framework of compound 1. Each CuII ion is connected by the anti-formed p-bitet, providing a 2D framework in the ab plane. The Cu–N distances (2.015 (4) Å) are similar to those observed in the cationic cages. The sheet waves are largely as shown in Fig. 1c. The CuII ions (Cu(3)) located at the tops of the waves are bound to the cationic Cu$_2$L8 cages via the μ-Cl$^{-}$ bridge on both sides of the sheet, as shown in Fig. 1c. The Cu–Cl distances are similar for Cu(3)–Cl(2) = 2.504 (2) Å and Cu(2)–Cl(2) = 2.553 (2) Å. The obtained sheet bearing cationic Cu$_2$L8 cages is stacked along the c axis (Fig. 2a). Fig. 2b shows the overall structure of the compound with van der Waals radii, exhibiting the creation of the channel-like space surrounded by the cationic cages. A channel, which has a size of about 8.3×3.4 Å2 in the channel window, is filled with four Cl$^{-}$ ions, one MeCN, and eight water molecules per three CuII ions of 1 (Fig. S3 in ESI†). Regarding the solvent molecules, MeCN was easily removed under air or reduced pressure to afford $[\text{Cu}(\text{p-bbiteit})_2(\mu$-Cl$\cdot \text{H}_2\text{O})_2 \subset$ Cu$_2(\text{p-bbiteit})_4] \text{Cl}_4(\text{H}_2\text{O})_8$ (1b). Characterization by elemental analysis, powder X-ray diffraction (PXRD) measurements (Fig. S4 in the ESI†) demonstrated that 1b retains the overall framework of 1. Because it stores well, we used 1b to characterize the properties of the coordination polymer bearing cationic cage units.

The inorganic anions ClO$_4^-$ and NO$_3^-$ are toxic to humans, and are particularly harmful to infants and children. The former anion disturbs the uptake of iodide in the thyroid gland, inhibiting the formation of growth hormone, while the latter anion disturbs the transport of oxygen by hemoglobin. Recent reports also suggest that NO$_3^-$ causes various cancers. These anions have been detected in the environment and in drinking water, therefore the development of new materials that can be used to remove these anions is very important. However, these anions are difficult to remove from aqueous solutions because of their high solubility.

As mentioned, we have previously shown that water-insoluble cationic Cu$_2$L8 complexes are useful for ClO$_4^-$ removal from aqueous solutions by anion-exchange reactions. To determine whether 1 exhibits useful properties based on the cationic cages arranged on the 2D sheet, we...
studied the ClO₄⁻ and NO₃⁻ anion removal properties of 1b. Fig. 3a and 3b show changes in the concentration of ClO₄⁻ and NO₃⁻ (1.0 mM) in an aqueous solution (100 mL) as a function of time after the addition of 1b (147.5 mg, 0.05 mmol) with different particle sizes. When a powdered sample of 1b (147.5 mg, 0.05 mmol) was added to an aqueous solution of NaClO₄ (0.1 mmol in 100 mL), the concentration of ClO₄⁻ was reduced from 1.0 mM to 0.43 mM after 10 min, and then to 0.26 mM after 180 min (Fig. 3a). Similarly, the concentration of NO₃⁻ was reduced from 1.0 mM to 0.58 mM after 10 min, and then to 0.28 mM after 180 min. The anion removal activity was significantly increased when the microcrystalline form of 1b was used. The powdered sample of 1b became aggregated during the treatment, but the microcrystalline sample did not, leading to the better activity of the latter. In contrast to the case of [SO₄²⁻:Cu₃(m-bbitrb)₄]SO₄, 1b showed less dependency of the particle size on the anion removal activity. This is ascribed to the effects of the channel frameworks, as generally observed in porous materials with channel frameworks, such as zeolites, graphite, and metal–organic frameworks.6, 16

![Fig. 3](image3.png)

Fig. 3 Changes in concentrations of ClO₄⁻ (1.0 mM) (a) and NO₃⁻ (1.0 mM) (b) in an aqueous solutions (100 mL) as a function of time after the addition of a fine-powdered (blue) and microcrystalline sample (red) of 1b (147.5 mg, 0.05 mmol).

In the ClO₄⁻ removal experiment in Fig. 3, Cl⁻ appeared, and increased, in response to the removal of ClO₄⁻ (Fig. S6 in the ESI†) (and hence a reduction in its concentration). This indicated that the anions are removed in anion-exchange reactions. To study the ClO₄⁻ and NO₃⁻ removal process by 1b, we characterized the reaction products obtained by the treatment of 1b with 10 equiv ClO₄⁻ or NO₃⁻ in aqueous solution. The PXRD measurements showed intense peaks, and the patterns of the reaction products were practically identical to those of 1 and 1b (Fig. S5 in the ESI†). This indicated that the framework of 1 is retained after the anion-exchange reactions. The inclusion of ClO₄⁻ and NO₃⁻ in the products was conveniently confirmed by IR spectroscopy; the IR spectra showed new intense peaks, ascribed to ClO₄⁻ and NO₃⁻, at around 1100 cm⁻¹ and 1400 cm⁻¹ (Fig. S7 in the ESI†).

Because of the increased dₓz² orbital level caused by the weak crystal field of the ClO₄⁻, the d–d absorption of the Cu²⁺ ions of the Cu₂L₈ cage, which include ClO₄⁻, is observed at the higher-energy region compared with Cu₂L₄ cages that include SO₄²⁻ or Cl⁻. The d–d absorptions characterized by reflectance spectra of the reaction products were similar for 1 and 1b (Fig. S8 in the ESI†), indicating that Cl⁻ in the cationic Cu₃(m-bbitrb)₄ cage was not exchanged with ClO₄⁻ or NO₃⁻ during the anion removal experiments. Only Cl⁻ in the channel-like space is exchanged with ClO₄⁻ and NO₃⁻ by the anion-exchange reactions. We then investigated whether 1b could remove ClO₄⁻ and NO₃⁻ from an aqueous solution that mimicked groundwater. We used a solution containing NaHCO₃ (3.0 mM), CaCl₂ (1.0 mM), MgCl₂ (0.5 mM), Na₂SO₄ (0.5 mM), and KNO₃ (0.5 mM). For the removal experiments, NaClO₄ or NaNO₃ (0.10 mmol) was dissolved in 100 mL of this solution. Fig. 4a and 4b show the changes in concentrations of ClO₄⁻ and NO₃⁻ as a function of time after the addition of 1b (299 mg, 0.10 mmol). The concentration of ClO₄⁻ was reduced from 1.0 mM to 0.32 mM after 10 min and then to 0.13 mM after 180 min (Fig. 4a), while the concentration of NO₃⁻ was reduced from 1.0 mM to 0.42 mM after 10 min and then to 0.28 mM after 180 min (Fig. 4b). The higher ClO₄⁻ removal activity by 1b is due to the higher affinity of the anion to the hydrophobic space surrounded by the cationic cages. Although many coordination polymers showed anion exchange property,17 the selective removals for ClO₄⁻ and NO₃⁻ from aqueous solutions were unprecedented.

We studied the recovery process of 1b from the anion-exchanged products by the simple reverse anion-exchange reactions or the chemical degradation process. The yields of 1b recovered from the ClO₄⁻- and NO₃⁻-absorbed products by treatments with excess NaCl in aqueous solutions were estimated to be 12% and 40% from ion chromatograph measurements (Fig. S11 in the ESI†). Lower yield for ClO₄⁻-included product is the result of high affinity of ClO₄⁻ in the channel space. As shown in the ESI†, it was also shown that analytically pure p-bbiteb was recovered by a general chemical degradation procedure from the anion-exchanged product in 47% (Fig. S12). The ligand could be used for re-preparation of 1b.

For comparison, we carried out the ClO₄⁻ and NO₃⁻ removal experiments with the mimicked solutions using the anion-exchange resins Purolite A530E (299 mg) and Purolite A520E (299 mg). These resins are widely used for the removal of ClO₄⁻ and NO₃⁻ from aqueous solutions. The results are shown in Fig. 4a and 4b. The removal of ClO₄⁻ and NO₃⁻ is remarkably faster in the case of 1b compared with the resins. This result means that 1b is superior in terms of ClO₄⁻ and NO₃⁻ removal; removal with 1b takes place within a shorter period than with the anion-exchange resins.
In conclusion, we have shown, for the first time, a one-step self-assembled construction of a 2D coordination polymer which bears the regular arrangement of cationic CuII₄⁺ cages on the sheet framework, creating a channel-like space for anions among the cationic cages. We have shown that the channels have high anion removal activity for the removal of \(\text{ClO}_3^- \) and \(\text{NO}_2^- \) from aqueous solutions via anion-exchange reactions. Furthermore, and significantly, the removal takes place within a shorter period than with anion-exchange resins.

M. K. thanks F. Tayasu of Purolite K. K. for providing us the anion-exchange resins. This work was supported by the JSPS Grant-in-Aid for Scientific Research (C) (No. 15K05450).

Notes and references

