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Abstract

A dynamical coupled-channel model is presented for investigating the nucleon resonances (N*)
in the meson production reactions induced by pions and photons. Our objective is to extract the
N* parameters and to investigate the meson production reaction mechanisms for mapping out the
quark-gluon substructure of N* from the data. The model is based on an energy-independent
Hamiltonian which is derived from a set of Lagrangians by using a unitary transformation method.
The constructed model Hamiltonian consists of (a) 'y for describing the vertex interactions
N* — MB,nnN with MB = yN,7N,nN,7A,pN,ocN, and p < 77w and o < 77w, (b) vy for
the non-resonant M B — M'B’ and nm — 77 interactions, (3) vy pr-n for the non-resonant
MB — mrN transitions, and (4) vzrN rn for the non-resonant 77N — 7N interactions. By
applying the projection operator techniques, we derive a set of coupled-channel equations which
satisfy the unitarity conditions within the channel space spanned by the considered two-particle
M B states and the three-particle 7w N state. The resulting amplitudes are written as a sum of
non-resonant and resonant amplitudes such that the meson cloud effects on the N* decay can be
explicitly calculated for interpreting the extracted N* parameters in terms of hadron structure
calculations. We present and explain in detail a numerical method based on a spline-function ex-
pansion for solving the resulting coupled-channel equations which contain logarithmically divergent
one-particle-exchange driving terms 21(\51)3, g resulted from the 77N unitarity cut. This method
is convenient, and perhaps more practical and accurate than the commonly employed methods of
contour rotation/deformation, for calculating the two-pion production observables. For complete-
ness in explaining our numerical procedures, we also present explicitly the formula for efficient
calculations of a very large number of partial-wave matrix elements which are the input to the
coupled-channel equations. Results for two pion photo-production are presented to illustrate the
dynamical consequence of the one-particle-exchange driving term Z](\Z)R v Of the coupled-channel
equations. We show that this mechanism, which contains the effects due to 7w N unitarity cut, can
generate rapidly varying structure in the reaction amplitudes associated with the unstable particle
channels 7A, pN, and 0N, in agreement with the analysis of Aaron and Amado [Phys. Rev. D13,
2581 (1976)]. It also has large effects in determining the two-pion production cross sections. Our
results indicate that cautions must be taken to interpret the N* parameters extracted from using
models which do not include 77N cut effects. Strategies for performing a complete dynamical
coupled-channel analysis of all of available data of meson photo-production and electro-production
are discussed.

PACS numbers: 13.60.Le, 13.60.-r, 14.20.Gk



I. INTRODUCTION

With the very intense experimental efforts at Jefferson Laboratory (JLab), Mainz, Bonn,
GRAAL, and Spring-8, extensive data of photo-production and electro-production of 7,
n, K, w, ¢, and two pions have now become available[l]. Many approaches have been
developed accordingly to investigate how the excitations of nucleon resonances (N*) can be
identified from these data. The objective is to extract the N* parameters for investigating the
dynamical structure of Quantum Chromodynamics (QCD) in the non-perturbative region.
The outstanding questions which can be addressed are, for example, how the spontaneously
broken chiral symmetry is realized, and how the constituent quarks emerge as effective
degrees of freedom and how they are confined. In this work, we are similarly motivated and
have developed a dynamical coupled-channel model for analyzing these data.

The 7N and vN reaction data in the N* region are most often analyzed by using two
different kinds of approaches. The first kind is to apply the models which are mainly the
continuations and/or extensions of the earlier works. These include the analyses by us-
ing the Virginia Polytechnic Institute-George Washington University (VPI-GWU) Model
(SAID)[2], the Carnegie-Mellon-Berkeley (CMB) model|d], and the Kent State University
(KSU) model|4]. Apart from imposing the unitarity condition, these models are very phe-
nomenological in treating the reaction mechanisms. In particular, they assume that the
non-resonant amplitudes, which are often comparable to or even much larger than the reso-
nant amplitudes, can be parameterized in terms of separable or polynomial forms in fitting
the data. Furthermore, their isobar model parameterizations do not fully account for the an-
alytical properties due to the 7w N unitarity condition, as discussed, for example, by Aaron
and Amado[5]. We will address this important question later in this paper.

The second kind of analyses account for the reasonably understood meson-exchange mech-
anisms. For numerical simplicity in solving the scattering equations, they however neglect
the off-shell multiple-scattering dynamics which determines the meson-baryon scattering
wavefunctions in the short range region where we want to map out the quark-gluon substruc-
ture of N*. The mn N unitarity condition is also not satisfied rigorously in these analyses.
The most well-developed along this line are the Unitary Isobar Models (UIM) developed
by the Mainz group (MAID)[6] and the Jlab-Yeveran collaboration[7], K-matrix coupled-
channel models developed by the Giessen group|&] and KVI groupld], and the JLab-Moscow
State University (MSU) model of two-pion production. More details of these approaches
have been reviewed recently in Ref.[1].

As we have learned recently in the A region, the results from the approaches described
above are useful, but certainly not sufficient for making real progress in understanding the
structure of N* states. For example, the empirical values of N-A transitions extracted by
using SAID and MAID are understood within the constituent quark model only when the
very large pion cloud effects are identified in the analyses based on dynamical models|10,
11, 12]. The essence of a dynamical model is to separate the reaction mechanisms from
the internal structure of hadrons in interpreting the data. To make similar progress in
investigating the higher mass N*, it is highly desirable to extend such a dynamical approach
to analyze the meson production data up to the energy with invariant mass W ~ 2 GeV. This
is the objective of this work. Our goal is not only to extract the resonance parameters, but
also to interpret them in terms of the current hadron structure calculations. The achievable
goal at the present time is to test the predictions from various QCD-based models of baryon
structure. It is also important to make connections with Lattice QCD calculations. The



600 . . . . 1000
so0f-  ° - |
* 100
400 yp->mn+p 7 [
| | 10E
2 g
2 300 - =
S ° [
yp>nnp+nnn+nnp
L i L
200}~ yp>mnp+p = F
L]
L[]

® L] 01

1001~ A

e (S
| O T [
>, ! ‘ ‘ ‘ ! ‘ 001 ‘ ! ‘ ! ‘ ! ‘ ! ‘ ! ‘
foct 1500 2000 2500 30 0 05 1 15 2 25 3
W (MeV) W (GeV)

FIG. 1: The total cross section data of meson production in ~yp reaction. Left: 1 — 7 and 2 — =«
production are compared. Right: KY ( KTA, K+%° K°%1), np, and wp production are compared
with some of the 1 — 7 and 2 — 7 production

Lattice QCD calculations are now being carried out[13] to give a deeper understanding of the
N-A transition. A systematic Lattice QCD program on N* is also under development[14].

The main challenge of developing dynamical reaction models of meson production reac-
tions in the N* region can be seen in Figlll We see that two-pion photo-production cross
sections shown in the left-hand-side become larger than the one-pion photo-production as
the yp invariant mass exceeds W ~ 1.4 GeV. In the right-hand-side, KY ( KTA, K30
K1), np, and wp production cross sections are a factor of about 10 weaker than the
dominant 7*7~p production. From the unitarity condition, we have for any single meson
production process YN — M B with MB = 7N, nN,wN, KA, KXY

. * *
Z<T7N,MB _TMB,’\/N> = Z T’YN,M’B/pM/B/TMB,M/B'
M'B’

+T’YN=7T7TNP7T7TNTJ>\ZB,W7TN ’ (1)

where p, denotes an appropriate phase space factor for the channel a. The large two-pion
production cross sections seen in Fig[ll indicate that the second term in the right-hand-
side of Eq.([) is significant and hence the single meson production reactions above the A
region must be influenced strongly by the coupling with the two-pion channels. Similarly,
the two-pion production yN — 7N is also influenced by the transition to two-body M B
channel

. *
(TyNaen — TrenoN) = > Ty M B PM B LN B
MB
*
+T’YN77F7TNp7T7FNT7r7TN,7r7rN . (2)

Clearly, a sound dynamical reaction model must be able to describe the two pion production
and to account for the above unitarity conditions.

The development of meson-baryon reaction models including two-pion production channel
has a long history. It was already recognized in 1960’s, as discussed by Blankenbecler and
Sugar[15], that the dispersion-relation approach, which has been very successful in analyzing
the data of 7N elastic scattering[16] and YN — 7N reactions[17, 18], can not be used
to analyze the data of two-pion production. The reason is that apart from the 7/N and



7N unitarity cuts, it is rather impossible to even guess the analytic structure of two-
pion production amplitudes. Furthermore, the dispersion relation models are difficult to
solve because of their bi-linear structure which is the price of only dealing with the on-shell
amplitudes.

Ideally, one would like to find alternatives to analyze the 7N and yN reaction data
completely within the framework of relativistic quantum field theory. The Bethe-Salpeter
(BS) equation has been taken historically as the starting point of such an ambitious approach.
The complications involved in solving the BS equation have been known for long time. For
example, its singularity structure and the associated numerical problems were very well
discussed in Refs.[19, 20, 21]. The BS equation contains serious singularities arising from
the pinching of the integration over the time component. In addition to the two-body
unitarity cut, it has a selected set of n-body unitarity cuts, as explained in great detail in
Ref.[21]. Considerable numerical efforts are already needed to solve the Ladder BS equation
for 7N elastic scattering, as can be seen in the work of Lahiff and Afnan[22]. Using the Wick
rotation, they can solve the Ladder BS equation below two-pion production threshold with
very restricted choices of form factors. It is not clear how to extend their work to higher
energies.

The first main progress in finding an alternative to the dispersion-relation approach
was perhaps also made by Blankenbecler and Sugar[l5]. By imposing the unitarity con-
dition, they show that the Bethe-Salpeter equation can be reduced into a covariant three-
dimensional equation which is linear and can be managed in practice. Compared with the
dispersion relation approach, the challenge here is account for the off-shell dynamics. This
approach was later further developed by Aaron, Amado, and Young (AAY)[23]. With the
assumption that all interactions are due to the formation and decay of isobars, they de-
veloped a set of covariant three-dimensional equations for describing both the 7N elastic
scattering and 71N — 7N reaction. They however had only obtained[23, 24, 27, 2€] a very
qualitative description of the 7 N data and only investigated very briefly the electromagnetic
meson production reactions. Their results suggested the limitation of the isobar model and
the need of additional mechanisms. For example, the N* excitation mechanisms are not
included in their formulation. They then proposed[] an approach to include the additional
mechanisms phenomenologically in fitting the data by using the minimal” equations which
are rigorously constrained by the 7/N and w7 N unitarity conditions and have the correct an-
alyticity of the isobar model. The AAY approach was later applied mainly in the studies of
7NN systems, such as those by Afnan and Thomas|27] and by Matsuyama and Yazaki[2§].
Development in this direction was well reviewed in Ref.[29].

The dynamical study of wN scattering was pursued further in 1980°s by Pearce and
Afman[30, 31, B2]. They derived the mN scattering equations by using a diagrammatic
method, originally developed for investigating the 7 NN problem[29], to sum the perturba-
tion diagrams which are selected by imposing the unitarity condition. Furthermore, they
relate the w N scattering to the cloudy bag model by extending the work of Thieberg, Thomas
and Miller[33, 134, 37] to include the 77N unitarity condition.

Since 1990 the wN and N reactions have been investigated mainly by using ei-
ther the three-dimensional reductions|3€] of the Bethe-Salpeter equation or the unitary
transformation methods[1(, 37]. These efforts were motivated mainly by the success of
the meson-exchange models of NN scattering[3€], and have yielded the meson-exchange
models developed by Pearce and Jennings[39], National Taiwan University-Argonne Na-
tional Laboratory (NTU-ANL) collaboration 40, 41], Gross and Suryal4d], Sato and



Lee[10, 111], Julich Group[43, 44, 45, 46], Fuda and his collaborators|31, 47|, and Utretch-
Ohio collaboration[d&, 49]. All of these dynamical models can describe well the data in
the A region, but have not been fully developed in the higher mass N* region. The main
challenge is to include correctly the coupling with the 77w /N channels.

We now return to discussing the two-pion production channel which is an essential part
of our formulation. Most of the recent two-pion production calculations are the extensions
of the isobar model of Liike and S6ding[5(]. The production mechanisms are calculated from
tree-diagrams of appropriately chosen Lagrangians. The calculations of Valencia Group[51]
included the tree diagrams calculated from Lagrangians with v, N, 7, p, A(1232), N*(1440),
and N*(1520) fields. To describe the total cross section data in all charged 77N channels,
they also included[52] the production of A(1700) and p effect arising from N*(1520).

The model developed by Ochi, Hirata, Katagiri, and Takaki[53, 4, [55] contains the
tree diagrams calculated from Lagrangians with v, m, p, w, N, A and N*(1520) fields.
An important feature of this model is to describe the excitation of N*(1520) within an
isobar model with three channels 7N, pN, and wA. They found that the invariant mass
distributions of all charged channels of yp — 77w N can be better described if the pseudo-
scalar TNN coupling is used. They also found that the N*(1520) — pN decay is the
essential mechanism to explain the differences between the invariant mass distributions of
7tn® and 7%7°. Similar tree-diagram calculations of two pion photo-production have also
been performed by Murphy and Laget [56].

The analyses[57, 58, 59] of two pion production by using the JLab-Moscow State Uni-
versity (JLAB-MSU) isobar model considered only the minimum set of the tree diagrams
proposed in the original work of Liike and Séding[5(]. However, they made two improve-
ments. They included all 3-star and 4-star resonances listed by the Particle Data Group
and used the absorptive model developed by Gottfried and Jackson[6(] to account for the
initial and final state interactions. They found that the 7 NA form factor is needed to get
agreement with the data of yp — 7~ A**, while the initial and final state interactions are
not so large. In analyzing the two-pion electro-production data, they further included a
7N phase-space term with its magnitude adjusted to fit the data. This term was later
replaced by a phenomenological particle-exchange amplitude which improves significantly
the fits to the data. With this model, they had identified[29] a new N*(%+, 1720) and the
production of the isobar channel 7 D;3(1520) which has never been considered before.

The common feature of all of the two-pion production calculations described above is that
the coupled-channel effects due to the unitarity condition, such as that given in Eqs.([Il)- (&),
are not included. The problems arise from this simplification were very well studied by
Aaron and Amado[], and will be discussed later in this paper. While the results from these
tree-diagram models are very useful for identifying the reaction mechanisms, their findings
concerning N* properties must be further examined. To make progress, it is necessary to
develop a coupled-channel formulation within which the 77N channel is explicitly included.
In this paper, we report our effort in this direction.

We have developed a dynamical coupled-channel model by extending the model developed
in Refs.[10, [11] to include the higher mass N* and all relevant reaction channels seen in Fig[ll
Our presentations will only include two-particle channels M B = vN, 7N, nN and three-
particle channel 77 NV which has resonant components 1A, pN, and o N. But the formulation
can be easily extended to include other two-particle channels such as wN, KA and K3 and
three-particle channels such as 7N and KKN.

Our main purpose here is to give a complete and detailed presentation of our model and



the numerical methods needed to solve the resulting coupled-channel equations. A complete
coupled-channel analysis requires a simultaneous fit to all of the meson production data
from 7N and N reactions, such as the total cross section data illustrated in Figlll and
the very extensive data from recent high precision experiments on photo-production and
electro-production reactions. Obviously, this is a rather complex problem which can not
be accomplished in this paper. Instead, we will apply our approach only to address the
theoretical questions concerning the effects due to 7w N unitarity cuts. For this very limited
purpose, we present results from our first calculations of YN — 7w N reactions.

In section II, we present the model Hamiltonian of our formulation. It is derived from a
set of Lagrangians, given explicitly in Appendix A, by applying the unitary transformation
method which was explained in detail in Refs.[10, 61]. The coupled-channel equations are
then derived from the model Hamiltonian in section IIT with details explained in Appendix
B. In section IV, we explain the procedures for performing numerical calculations within
our formulation. The numerical methods for solving the coupled-channel equations with
mwN cut are explained in section V. Results of yp — 7w N are presented and discussed in
section VI. A summary and the plans for future developments are given in section VII. For
the completeness in explaining our numerical procedures, several appendices are given to
present explicitly the formula for efficient calculations of a very large number of partial-wave
matrix elements which are the input to the coupled-channel equations, and to explain how
the constructed resonant amplitudes are related to the information listed by the Particle
Data Group (PDG)[62].

II. MODEL HAMILTONIAN

In this section we present a model Hamiltonian for constructing a coupled-channel re-
action model with vV, 7N, nN and nw N channels. Since significant parts of the 7w N
production are known experimentally to be through the unstable states 7A, pN, and per-
haps also o N, we will also include bare A, p and o degrees of freedom in our formulation.
Furthermore, we introduce bare N* states to represent the quark-core components of the
nucleon resonances. The model is expected to be valid up to W = 2 GeV below which three
pion production is very weak.

Similar to the model of Refs.[10, [11](commonly called the SL model), our starting point is
a set of Lagrangians describing the interactions between mesons (M = v, 7,1, p,w, o --) and
baryons (B = N, A, N*-..). These Lagrangian are constrained by various well-established
symmetry properties, such as the invariance under isospin, parity, and gauge transformation.
The chiral symmetry is also implemented as much as we can. The considered Lagrangians
are given in Appendix A. By applying the standard canonical quantization, we obtain a
Hamiltonian of the following form

H = /h(f,t:())df
= Hy+ Hyp, (3)

where h(Z,t) is the Hamiltonian density constructed from the starting Lagrangians and the
conjugate momentum field operators. In Eq.(B), Hy is the free Hamiltonian and

Hi= Y Tupes+ Y, hwwmrewn, (4)

M,B,B’ M,M',M"



where I'y;p..p describes the absorption and emission of a meson(M) by a baryon(B) such
as tN < N and 7N < A, and hy o describes the vertex interactions between mesons
such as mm <> p and ym < 7w. Clearly, it is a non-trivial many body problem to calculate
meson-baryon scattering and meson production reaction amplitudes from the Hamiltonian
defined by Eqs.(B)-(H). To obtain a manageable reaction model, we apply a unitary trans-
formation method[10, 61] to derive an effective Hamiltonian from Eqs.(B])-(#). The essential
idea of the employed unitary transformation method is to eliminate the unphysical vertex
interactions M B — B’ with masses mjy; + mp < mp from the Hamiltonian and absorb
their effects into M B — M'B’ two-body interactions. The resulting effective Hamiltonian is
energy independent and hence is easy to be used in developing reaction models and perform-
ing many-particle calculations. The details of this method have been explained in section II
and the appendix of Ref.[10].

Our main step is to derive from Eqs.(B])-( ) an effective Hamiltonian which contains inter-
actions involving wm N three-particle states. This is accomplished by applying the unitary
transformation method up to the third order in interaction H; of Eq.([ ). The resulting
effective Hamiltonian is of the following form

Hepp=Ho+V, (5)
with
HO = Z Ka ) (6)

where K, = \/m2 + po’ is the free energy operator of particle o with a mass m., and the
interaction Hamiltonian is

V:FV_'_UQQ—'—'UI’ (7)
where
Ty = DO v+ Tvecnn) + D haps o} + {c} (8)
N* MB e
Vg = Z UMB,M'B’ T Unr - (9)

MB,M'B’

Here c.c. denotes the complex conjugate of the terms on its left-hand-side. In the above
equations, MB = yN, 7N, nN,wA, pN,cN represent the considered meson-baryon states.
The resonance associated with the bare baryon state N* is induced by the vertex interactions
Py« and Dy ppn.  Similarly, the bare meson states M* = p, o can develop into
resonances through the vertex interaction hj«_ ... These vertex interactions are illustrated
in Figll(a). Note that the masses MY. and mY,. of the bare states N* and M* are the
parameters of the model which will be determined by fitting the 7 N and 77 scattering data.
They differ from the empirically determined resonance positions by mass shifts which are
due to the coupling of the bare states with the meson-baryon scattering states. It is thus
reasonable to speculate that these bare masses can be identified with the mass spectrum
predicted by the hadron structure calculations which do not account for the meson-baryon
continuum scattering states, such as the calculations based on the constituent quark models
which do not have meson-exchange quark-quark interactions. It is however much more
difficult, but more interesting, to relate these bare masses to the current Lattice QCD

7
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FIG. 2: Basic mechanisms of the Model Hamiltonian defined in Egs.(8)-(10).

FIG. 3: Mechanisms for vyrp arp of Eq.(9): (a) direct s-channel, (b) crossed u-channel, (c) one-
particle-exchange t-channel, (d) contact interactions.

calculations which can not account for the scattering states rigorously mainly because of the
limitation of the lattice spacing.

In Eq.([@), varp mp is the non-resonant meson-baryon interaction and v, is the non-
resonant 77 interaction. They are illustrated in FiglA(b). The third term in Eq.([) describes
the non-resonant interactions involving 7w N states

v = g3 + 33 (10)
with

Vo3 = ]MZB[(UMB,WWN) + (e.c.)]

V33 = UggN,7nN -

They are illustrated in Figll(c). All of these interactions are defined by the tree-diagrams
generated from the considered Lagrangians. They are illustrated in FigB for two-body in-
teractions vy p ap and in Fig Al for vy p r-n. Some leading mechanisms of v, and vVrrn zrn
are illustrated in Figll The calculations of the matrix elements of these interactions will
be discussed later in the section on our calculations and detailed in appendices. Here we
only mention that the matrix elements of these interactions are calculated from the usual
Feynman amplitudes with their time components in the propagators of intermediate states
defined by the three momenta of the initial and final states, as specified by the unitary
transformation methods. Thus they are independent of the collision energy FE.
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FIG. 4: Examples of non-resonant mechanisms of vy rry with M = 7 or 7 (denoted by long-
dashed lines). M denotes the intermediate mesons (7, p,w).
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FIG. 5: Examples of non-resonant mechanisms of vr; and vrzn zrN

III. DYNAMICAL COUPLED-CHANNEL EQUATIONS

With the Hamiltonian defined by Eqs.(H)-(I) , we follow the formulation of Ref.[63] to
define the scattering S-matrix as

Sap(E) = 0ap — 2m)iT(E), (11)
where the scattering T-matrix is defined by
Tw(E) =< a|T(E)[b >
with

ﬂm:v+vfjiigﬂm. (12)
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Since the interaction V', defined by Egs.([d)-([0), is energy independent, it is rather straight-
forward to follow the formal scattering theory given in Ref.[63] to show that Eq.([I2) leads
to the following unitarity condition

(T(E) = TH(E))ay = =2mi Y T](E)(E — E)Tu(E), (13)

where a, b, ¢ are the reaction channels in the considered energy region.

Our task is to derive from Eq.(IZ) a set of dynamical coupled-channel equations for
practical calculations within the model space N* ® M B & wwN. In the derivations, the
unitarity condition Eq.([3]) must be maintained exactly. We achieve this rather complex
task by applying the standard projection operator techniques[64], similar to that employed
in a study|[65] of 7NN scattering. The details of our derivations are given in Appendix B. To
explain our coupled-channel equations, it is sufficient to present the formula obtained from
setting I'y+ -y = 0 in our derivations. The resulting model is defined by Eqs.(B74)-(B96)
of appendix B. Here we explain these equations and discuss their dynamical content.

The resulting MB — M’'B’ amplitude Ty;p_ 5 in each partial wave is illustrated in
Figll It can be written as

Ty (E) = tupwp (E) + g (E), (14)

The second term in the right-hand-side of Eq.([[d) is the resonant term defined by

e (E) = Y. Tupon: (B)D(E)]in:—arp (E) (15)
Nf N

10



with
[D(E) i (B) = (E — My« )di,; — Zi(E) (16)
where MY is the bare mass of the resonant state N*, and the self-energies are

MB

The dressed vertex interactions in Eq.([H) and Eq.([7) are (defining Tarpn+ = The_1s5)

fMBHN*(E) = I'ypon+ + Z tupmp (B)Gurp (E) yvrpr—ne (18)
M'B’

fN*—»MB(E) = 'y + Z Iy Gurp (Bt s ms(E) . (19)
M'B’

The meson-baryon propagator GGy, in the above equations takes the following form

1

Gup(E) =
w(E) E—Kp— Ky — Sup(E) +ic’

(20)

where the mass shift ¥,5(FE) depends on the considered M B channel. It is ¥y5(E) = 0 for
the stable particle channels M B = 7w N,nN. For channels containing an unstable particle,
such as M B = 7w/, pN,oN, we have

P7r7rN

Sus(E) = [< MB
ws(B) =< MBlov g — 5 kT

g;r/|MB >]un—connected (21)

with
gv = FA—WTN + hp—>7r7r + h0—>7r7r . (22)

In Eq.(2l) "un — connected” means that the stable particle, = or N, of the M B state is a
spectator in the 77N propagation. Thus Xj/p(E) is just the mass renormalization of the
unstable particle in the M B state.

It is important to note that the resonant amplitude t&, s up(E) is influenced by the
non-resonant amplitude ¢y p pp(E), as seen in Eq.([[H)-([Id). In particular, Egs.(IS)-([I9)
describe the meson cloud effects on N* decays, as illustrated in Figfd for the A — yN decay
interpreted in Refs.[10, [L1l]. This feature of our formulation is essential in interpreting the
extracted resonance parameters.

Here we note that the N* propagator D(FE) defined by Eq.([) can be diagonalized to
write the resonant term Eq.([H) as

fMB—»N*<k)fN*f>M/B’<k/)
E — My.(E) + iT% (E)’

tﬁB,M'B/(ka k) = Z

N*

(23)

where 'y, 5_, v~ and mass parameters My.(E) and T (E) are of course related the dressed
vertexes 'y« p and self energies ¥, ; defined in Eqs.([d)-([[d). Eq.([3) is similar to the
usual Breit-Wigner form and hence can be used to relate our model to the empirical resonant
parameters listed by Particle Data Group. This non-trivial subject is being investigated in

Ref. [66].

11
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The non-resonant amplitudes typarp in Eq.([d) and Egs.([I8)- (@) are defined by the
following coupled-channel equations

tMB,M’,B’(E> = VMB,M/B/<E)+ Z VMB,M”B”<E)GM”B”<E>tM”B”,M’B’<E> (24)

M//B//
with
Vusmwp (E) =vupmp + Zupmp (E). (25)

Here Zyp e (E) contains the effects due to the coupling with 77N states. It has the
following form

Zupmp (F) = <MB | FE — HOPZWQZWN —|—ieFT | M'B’" >
—[OmBm B EmB(E)] (26)
with
UpaN = UrNaN + Unr & UngNoraN (27)
F = gv+vmBron (28)

where gy has been defined in Eq.([22). Note that the second term in Eq.(28) is the effect
which is already included in the mass shifts ¥),5 of the propagator Eq.(20) and must be
removed to avoid double counting.

The appearance of the projection operator P,y in Egs.(21l) and (28) is the consequence of
the unitarity condition Eq.([3). To isolate the effects entirely due to the vertex interaction

12



MB,M'B’

FIG. 8: One-particle-exchange interactions Zfﬁ)wA(E), Zﬁ?w and ZSJEV)WA of Eq.(30).

gv = Taan + hpsnr + honr, We use the operator relation Eq.(B33) of Appendix B to
decompose the 7w N propagator of Eq.(28) to write

FE I
Zaisrs (BE) = 23 v (B) + 2305 v (B) . (29)

The first term is

Pﬂ'ﬂ'
Z](\f%,M/B’(E) =< MB | gvﬁ;\[«}%gé} | M/B, > _[5MB,M’B’ZMB(E)] . (30)

Obviously, Z](\f};’ v (E) is the one-particle-exchange interaction between unstable particle
channels 7A, pN, and o N, as illustrated in Figl§ The second term of Eq.([29) is

ZZ(\?B,M’B’<E) = < MB| F%tﬂﬁN,wwN<E)%FT | M'B" >
+ < MB | gV%U&BmN | BM' >
+ < MB | UMB’WWNﬁgI/ | M'B’ >
+ < MB]| UMB,W]V%ULBMN | M'B' > . (31)

Some of the leading terms of Z](VI[)B,M/B,(E) are illustrated in Figlfl Here ¢, n -n(E) is a
three-body scattering amplitude defined by

1

LrnNor E) = A7r7r A7r7r = . A7r7r 32
Nantd (B) = rntt 4 Ond e g i (32)

where 0.,y has been defined in Eq.[21). Few leading terms of Eq.([82) due to the direct
s-channel interaction v* (illustrated in Fig.3) of v;n ,n are shown in Figllll These terms
involve the 7w N propagator 1/(E — K, — K, — Ky + i€) and obviously can generate 7w N
cut effects which are due to the 7w /N vertex. This observation indicates that the 7N scat-
tering equation of Aaron, Amado, and Young[23] can be related to our formulation if the
interactions which are only determined by the mw N vertex are kept in the equations pre-
sented above. We however will not discuss this issue in this paper. The relations between our
formulation and the AAY model can be better understood in our next publication[67] where
we will determine the strong interaction parts of our Hamiltonian by fitting 7N reaction
data up to invariant mass W = 2 GeV.

The amplitudes Thyp mp = tvup,mp + tﬁBM,B, defined by Eq.(Id]) can be used directly
to calculate the cross sections of TN — 7N, nN and YN — wN,nN reactions. They are
also the input to the calculations of the two-pion production amplitudes. The two-pion

13
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FIG. 9: Examples of mechanisms included in Z](é)B’M,B,(E) of Eq.(31).

FIG. 10: Some of the leading order terms of t;rn =~ of Eq.(32). The open circle represents the
direct s-channel interaction v® illustrated in Fig.3 for the M B = M'B’ = =N case.

production amplitudes resulted from our derivations given in Appendix B are illustrated in
FiglTl They can be cast exactly into the following form

Teanmp(E) = ngrGV,MB(E) + TffN,MB(E) + T7f7]rVN,MB(E) + T%ZV,MB(E) (33)

14



o . Wl .
N P N

TMB,T[TN
So . ~ . ~ T .
“B P _ ~s~ P ~~~, PRl P
AL T R MO
VT[N,T[TN TI\/IB,T[N VT[N,T[TN
~ ~ p,o -

T
MB,TiA T,\,lB,p(o)N
FIG. 11: Graphical representations of Ty v p defined by Eqs.(33)-(37).

with
T up(BE) = <OSNE) Y Vennavs [Orrm s
M'B’
T8 ns(E) = < SN (BTN N Goa(B)[teann (B) + 8 yp(B)|MB >, (35)

TN (B) = < SN (B Gon (B)ton i (E) + thy s (E)IMB >, (36)

ToNarp(E) = < Vo N (B0 nGon (B)[ton s (E) + tiy ap(E)]MB > . (37)
In the above equations, the 7w N scattering wave function is defined by
<oy (B)] = <7rNIQL(E), (38)

where the scattering operator is defined by

1
E—KW—KW—KN+Z'6]'

QN(E) =< 77 N|[1 + trrn men (E) (39)
Here the three-body scattering amplitude ¢,y -n(E) is determined by the non-resonant
interactions Vg, Vrnan and Uy rrn, as defined by Eq.(BZ).

We note here that the direct production amplitude 747\ 5(F) of Eq.([@) is due to
Uren v interaction illustrated in FigHl while the other three terms are through the un-
stable TA, pN, and o states. Each term has the contributions from the non-resonant
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amplitude 5y 5(E) and resonant term 3 gy 5(E). As seen in Eq.(IE)-([), the reso-
nant amplitude 3%, 5 ,5(E) is influenced by the non-resonant amplitude ¢y arp(E). This
an important consequence of unitarity condition Eq.(3]).

IV. CALCULATIONS

The N* information can be accurately extracted only when the extensive meson produc-
tion data of 7N and yN reactions are analyzed simultaneously. Obviously, this is a rather
complex task by using the dynamical coupled-channel formulation described in section III.
In addition, it is a highly non-trivial numerical task to solve the coupled-channel equa-
tion Eq.(24]) which contains a logarithmically divergent driving term Zyp arp (E) defined
by Eqgs.29)-BT). As a first step, we focus in this work on the development of numerical
methods for solving this coupled-channel equation. This then allows us to perform two-pion
photo-production calculations to investigate the effects due to the 7w N cut effects which are
not included in the recent two-pion production calculations, as briefly reviewed in section I.

To proceed, we first note that the matrix elements of Z](\?B, v as defined by Eq. (1),

is expected to be weaker than the other driving terms vy arp and Z](\fA v because it
involves more intermediate states. For our present purpose of developing numerical methods,
this rather complex term can be neglected in solving the coupled-channel Eq.([24]). For
simplicity, we also neglect the non-resonant interactions on the final 77N state by setting
< ¢§;3V(E)| —< mN| in the calculation of two-pion production amplitudes defined by
Eqs.(34)-BD).

To make contact with recent experimental developments, we focus on the YN — wn N
process. Our task is therefore to develop numerical methods for solving the following equa-
tions

Tennan(E) = Ty 5 (B) + Tty on (B) + Ty on (B) + T30 v () (40)

with
Ty N (E) = < AN |ren N + VnrNan Gan (B)[tanyn + tiy YN > (41)
Trvon(E) = <7rN|Th_ oy Gra(B)Erayw (E) + tEs w7 N >, (42)
TferNp,N(E) = < 7T7TN|h;ererN(E)[prwN(E) + th,~,N]|7N >, (43)
ToNon(B) = < mrN|hl_ o Gon(B)lEonn (B) + thy NN > . (44)

Here the non-resonant scattering amplitudes £, B,mp 1s obtained from solving Eq.(24]) with

one of its driving term ZJ(é)R w e set to zero. To the first order in electromagnetic coupling,
the matrix elements of these non-resonant amplitudes are calculated from the following
coupled-channel equations

fMB,M/B/(EJ;',E) = VMB,M'B'(EJ;',E)
+ Y /dk_?;VMB,M”B”<E7 _;,7E)GM//B//<]€_;/7E)£M”B”,M/B/<k_;lalg;aE)7

MIIB//
(45)
tAMB,yN(/a q, E) = UMB,A/N(]; ‘7)
+ Z /dk_;;iMB,M/B/U;a ];/7 E)GM/B/<]€_;7 E),UM/B/KYN(E7 q_) (46>

M'B’
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with
Vieg s (K, K, E) = vaparp (B, K) + Z355 ap (K, K, B) (47)

where M B = wN,nN,7A, pN,oN. Despite the neglect of some of the terms of the formu-
lation presented in section III, the calculations based on the above equations are already
far more complex than all of existing calculations of two-pion production based on the tree-
diagram models or K-matrix coupled-channel models. This is however a necessary step
to correctly account for the meson-baryon scattering wavefunctions in the short range re-
gion where we want to extract and interpret the N* parameters using the data of meson
production reactions, as discussed in section I.

In the following subsections, we describe our numerical procedures for solving Eqs. ([#H)-
@D to get the non-resonant amplitudes fMB,M/ pr, calculating the resonance amplitudes
Y B g, and evaluating the two-pion production amplitudes Eqs. (@0)- (E4).

A. Non-resonant amplitudes

We solve Eq. ([ H) in the partial-wave representation. To proceed, we follow the convention
of Goldberger and Watson[63] to normalize the plane-wave state |k > by setting < k|k/ >=
§(k — k). In the center of mass frame, Eq.([T) then leads to the following formula of the
cross section of M (k) + B(—k) — M (k') + B(—k') for stable particle channels M B, M'B' =
YN, N,nN

do  (4m)? 1
C7 ) i (K pars(k
R R L T e s vy

> > | <MBI|T(E)MB> |

m; Min m!. .m
IMTYIB iv"E

(48)
with
< M'B|T(E)|MB >=
< Jhm,, il G Tl | Tar g ars (K, K E) | jarmy,, iy 5Myy, oMy, >,
(49)

where [(jar, my,,), (iar, miy, )] and [(1my,,), (TBM,, )] are the spin-isospin quantum numbers
of mesons and baryons, respectively. The incoming and outgoing momenta k and k' are
defined by the collision energy F

E =Ey(k)+ Eg(k) = Exp(K') + Ep (k) , (50)
and the phase-space factor is

pun(k) = 7P ERE) (51)

The partial-wave expansion of the scattering amplitude is defined as

YN JM,TM 2 JM,TMrt /3
TwpmsE K, E)y= S Y Y5 s (K) > Tiisinrpr sk b, B) < Yo 0t (k)|
JM, TMr LS,L'S’

(52)
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where the total angular vector in the spin-isospin space is defined by

JMT My (3 B 4 . . .
|YL(ijB)S(k:) > = Z |70y Ear, My T8 M s TBMey >< T MyplingTpm,, me, >

all m

X < JM|LSmLmS >< Sm5|ijijMij > YLmL(l%) .

(53)
Clearly, Eqgs.([B2)-([E3) lead to
Ti]’g’M’B’,LSMB(klv k, E)
- / dk / die < YT (6 Tor s (R, Ky B)| VAN () >
(54)

By also expanding the driving term VMB,M/B/(E, K, E) of Eq.(#3) into the partial-wave
form similar to Eq.(B2), we then obtain a set of coupled one-dimensional integral equations

7 JT / _ Y/JT /
tL’S’M/B/,LSMB<k7k7E) - VL/S’M/B’,LSMB<k 7k7E)

+ 3% / K2RV g s (K K E)

M//B// L//S//
XGM//B//(]{:”, E)f{l,/];S//M//B//7LSMB(k/,, k:, E) 3 (55)
where the driving term is
JT / JT / (E)JT /
Virsws Lsup(K's k) = virgnr g psup(K' k) + Zp g sk E) . (56)

The above partial-wave matrix elements of the non-resonant interaction vypp pp and one-

particle-exchange interaction ZJ(ME/)B/, wp(E) are given in Appendices C and E, respectively.
There the numerical methods for evaluating them are also discussed in some details; in
particular on the use of the transformation from the helicity representation to the partial-
wave representation.
The propagators in Eq.(B3) are given in Appendix B. Taking the matrix elements of
Eqs.(B84)-(B90), we have
1

Gk, E) = E — Ey(k) — Eg(k) + ie (57)

for stable particle channels M B = 7N, nN, and

1
Gup(h, E) = 5= En(k) — Eg(k) — Syp(k, E) (58)

for unstable particle channels M B = wA, pN,ocN with

. 2 ‘fAJrN<Q>|2

Loalk.B) = [ dg— B (k) — [(Ex(q) + Ex(@))? + K2 1 i’ (59)
- 2 |fp,7r7r(Q)|2

(k. B) = [ qdaz— Ex(k) — [(2Bx(q))? + K22 + i€’ o)
o 2 |f077|'7T<q>|2

Son(k.B) = [ q*da— Ex(k) — (2B ()2 + K7 1 i’ (61)
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FIG. 12: Logarithmically divergent moon-shape regions of the matrix elements of Zfri) AK Kk E)

(solid curves) and Zﬁ?wA(k’, k, E) (dashed curves).

where the vertex function fa ~n(¢) is from Ref.[10], f, ~x(¢) and f, »~(q) are from the isobar
fits[6&] to the w7 phase shifts. They are given in Eqgs.(D7)-(D9) of Appendix D.

To solve the coupled-channel integral equation Eq.(BH), we note that the matrix elements
of their particle-exchange driving terms Z. A)W Alk, k' E) and Zg?w Alk, K, E) (FigB) contain
singularities due to the 7w N cuts. This can be seen in Eq.(E5) of Appendix E which is the
essential component of their partial-wave matrix elements Eq.(E2). Qualitatively, they are
of the following form

(E)JT / AR WA(L/S/ LS, l,k k') 1(2)
GNENCIRIEDY [ e G i @
, " AJTW (L'S", LS, 1, k, k) Py(x)
Zimaseatho K B) ~ 3 [ de— e (63)
En(k) — En(K) — Ex(k + K) + ie

where A”’7 is a non-singular function, Py(x) is the Legendre polynomial, and z = k - k’.
One can easily see that these two driving terms diverge logarithmically in some momentum
regions. For E = 1.88 GeV, they are within the moon-shape regions of Figll2 Their
boundary curves are defined by E — E. (k) — Ex(k') — En(k £ k') = 0 for ZSZ)JA and by
E—-FE.(k)—En(K)—E(k£k') =0 for Zﬁ?wﬂ In Figll3 we show the rapid change of the

matrix element Z(A)na(k K';E) at E =1.88 GeV and k' = 300 MeV /c when the momentum
k is varied to cross the moon—shape region. In particular, the imaginary part (dashed line) is
non-zero only in a narrow region. The matrix elements of Zﬁ?w Ak, K'; E) have the similar
singular structure.

With the singular structure illustrated in Figl[3, Eq.(B3) can not be solved by the stan-
dard subtraction method. To get 7N — 7w N,nN and YN — wN,nN on-shell scattering
amplitudes, it is sufficient to apply the well-developed method of contour rotation to solve

Eq.(B3) on the complex momentum axis defined by kg = ke ™ with § > 0. However,
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FIG. 13: Matrix elements of the one-particle-exchange term Z ( A) Ak K E)for L=L"=1,J =
5/2,T =1/2 at k¥’ =300 MeV/c and E = 1.88 GeV.

the resulting half-off-shell transition amplitudes #yr5.n(kg, ¢; E) with MB = 7A, pN, o N,
defined on the complex momentum kg, can not be used directly to evaluate the matrix ele-
ments Eqgs. ([ @)-#4) for calculating the two-pion production amplitudes. Considerable effort
is needed to find an appropriate contour integration for getting the desired matrix elements
on the real momentum axis. The situation is similar to the calculations of deuteron breakup
in wd or pd reactions, as well discussed in the literatures[69]. We overcome this difficulty by
applying the spline-function method developed in the study of 7 NN reactions[70, [71]. This
method is explained in details in the next section.

The solutions of Eq.(BH) are then used to calculate the non-resonant photo-production
amplitudes Eq.([#H). Here we use the helicity-LSJ mixed-representation that the initial vV
state is specified by their helicities, A, Ay, but the final M B is defined by the (LS)J angular
momentum variables

vipan (@) = D0 D0 S IV R) > vl (K¢ E)
JM,TMy LS Ay
2J+1
= DM(>W ) (@gs gy —Bq) < Ay Ay [ (64)

where Dy, (4,0, —¢) = ei(erm/)‘bdf;ﬂ’m, (0) with dﬁn7m/(9) being the Wigner rotation function.
Eq.(#d) then leads to

e Ay ANy (k.q, E) = visup )W)\NmTN (k. E)+ > > /ledk/tLSMB vsrp (kK E)
M/B/ L/S/
XGMIBI(k E)UL/S/M/B/ AVANmTN(k’q’ E)
(65)
(k,q, F) considered in our calculations are given in Ap-

pendix F. This unconventional representation, which is convenient for calculations, can be
related to the usual multipole expansion, as also given in appendix G.

: JT
The matrix elements vjgyp Ay
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B. Resonant amplitudes

Our next step is to calculate the resonant term defined by Eq.([H). Here we need to
perform calculations using bare N* — M B vertex functions generated from some hadron
models. Obviously, this is a non-trivial task and beyond the scope of this work. In particular,
one needs to analyze the consistency between the employed hadron model and our reaction
model. Instead, we use the diagonalized form Eq.([23) and simply make some plausible
assumptions to calculate the resonant amplitude %, gy p DY using the information listed by
Particle Data Group (PDG)[62]. In the center of mass frame we write Eq.(23]) for yYN — M B
transition in the helicity-LSJ mixed-representation as

~ . 1 ~
thJ]\jﬂ—‘B >"Y)‘NmTN (k7 q, E) = Z[F]{/Z,LSMB(]{;>] E . MN i ZFN (E) F}]V,I’:,)WANWLTN (q) ) (66>
N* * —= *

where My~ is the resonance position. The calculations of the decay functions I'{% « s (K)

and T4 N, (q) are explained in appendix I. They are

)\Nm.,—N
1 / [8m2 M k
JT _
F LSMB(k) - 27T)3/2W EB mBk‘ GLSMB k kR)(k‘R) (67)
1
F]{fT AYANMT (Q) = (27’(’)3/2 ( )\/7[\/ ZQRAi{nTN]g (q QR)(S)\ (Ay—=AN) > (68)

where kg and qr are defined by My« = Eg(kr) + En(kr) = qr + En(qr). The form factors
are normalized such that f/Z(kgr,kr) = 1 and g{*(qr,qr) = 1. For simplicity, we choose

P (k, ki) = (A%/((k — k) + A)? and 637 (g, qr) = (A%/((q — qr)? + A%))? with A = 650
MeV/c. As explained in Appendix I, the forms Eqs.([@0)-(68) are chosen such that the
coupling strength Gig g 1s related to the partial decay width I'y5(N5,) of the considered
N*— MB

FMB(N;T) = Z‘GLSMB|27 (69)
LS

and the YN — N* helicity amplitude Aﬁ;w is related to the partial decay width by

vamey (Njr) = in My m[\As/z o | A fom, ] (70)

Eq.([@) is defined in the N* rest frame and the photon momentum ¢'is in the quantization
z-direction.
The total width I'y+(E) in Eq.(68) is parameterized by using the variables of N* — 7N

decay as
k) [k 2L, A2 Lr+4
F . E Ftot p( o 71
N ( ) (kOﬂ') kOTF (kw - kOﬂ')Q + A2 ’ ( )

where ' is the value given by the Particle Data Group, L, is the orbital angular momentum
of the considered 7N state and

EEN(k)E.(k
En(k) + Er (k)
In the above equations, k, is the pion momentum at energy E while ky, is evaluated at

E = Mpy~. We set the form factor parameter A = 650 MeV/c. Our main results on the
effects due to the 7w N cut are not changed much if we vary the cutoff A in Eqs.(&1)-(7Tl).

(72)
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C. N — 7N cross sections

Our last step is to calculate the cross sections of v(q) + N(p) — (k1) + 7(k2) + N(p).
With the S-matrix defined by Eq.([d) and the normalization < k|k’ >= §(k — k'), we have
9 Lo
do = ( ﬂ-) 5(4 ( q— kl — ]{ZQ — p/)dkldedp/
'Urel
X_ Z Z | < klu myg,, k27 mlzvp m mTN|T7T7rN’yN< )‘q_))\’yaﬁ)\NmTN > |2 ) (7?))
)\—YAN m’,

N

where m;, and m;, are the isospin quantum number of the outgoing two pions, m/ —and
my, . are the spin-isospin quantum numbers of the outgoing nucleon. The initial 7V state is
specified by their helicities A,, Ay and the nucleon isospin 7n. With some straightforward
derivations, the differential cross section with respect to the w7 invariant mass M, can be

written in the center of mass ( p= —¢ and k= (El + EQ) = —ﬁ)as

do do
— (40 / 0 4
dMﬂ_ﬂ /d k d k12 koko12dM7r7r (7 )
with
do En(p), En(0')Ex (k1) Er(k2)
= (2n)!
T (2m)' (=1l B [k - kia]

X_ Z Z | < klamllaijamzzapijmrN|T7r7rN'yN( )|(:7)\’Y7ﬁ)\NmTN > |27

>"Y)‘N md\]
(75)

where /;1 and EQ are related to the relative momentum E12 and center of mass momentum k
of the 7w subsystem by a Lorentz boost

L k k- ko
= E
kl k12 _'_ Mﬂ.ﬂ.[ W(k12) _'_ Eﬂ_ﬂ_<k) _'_ Mﬂ-/n—] ) (76>
ke = —k E (ko) —
2 12 + M7r7r[ w(k12) B (R) +Mm] (77)
with
Mer = 2E (ko) (78)

E = En(k) + Eqx (k) (80)
The above equations lead to
E?2 —m3 + M2
= — M2 1
A (e S (81)
M2
(83)
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The matrix element < kq,m;,, krg,miQ,ﬁm;Nm'TN|T,TWN,W/N(E)|q*Aq/,ﬁ)\NmTN > can be cal-

culated from the partial-wave matrix elements of tAMBﬁN(E), tR vBN(E), and the vertex
interactions A — 7N and p,0 — 7mw. As an example, the matrix element of the term
e, N~ (E) defined by Eq.[#3) can be calculated from

N . —
TN| 7f7rN’yN( )|q>\’Y7p)\NmTN >

Z Z Z Z < .]Wm]ﬂ'l Y Zﬂ'mzl 9 .]ﬂ'm]ﬂ'27 Zﬂ'mZQ |}/l (p;:.b;:-;lpmlp <k12> >

mjpymip s JM‘],TMT LS

— — _; ’
< klamh)k%mig)pm'

/ JMjy, TMy /7 fp,7r7r(k:12)
X< s iy G T Wi, s ™ (8) > 5 g s TR ) — S (6, B)
X [figpN,)\n,)\NmTN (k:a q, E) + t}L%Stg]wV Ay ANy (ka q, E)] (84)

Wher.e |YJ?51]T;;/IT( p) > has been defined in Eq.(B3)), j = m;, = 0 and hence only s = 0 and
| = j, are allowed in the sum.
Expressions similar to Eqgs.([Z3)-(84) can be easily obtained for the differential cross sec-

tions with respect to the 7N invariant mass M,y by changing the labels of variables.

V. NUMERICAL METHODS

To illustrate the numerical method we have developed for solving the coupled-channel
equation Eq(BH) with a singular particle-exchange driving term Zﬁa w1t is sufficient
to consider the Alt-Grassberger-Sandhas (AGS) integral equation[72] within a simple three
identical bosons model of Amado[73]. This model describes the scattering of a boson b from
a two-boson bound state d via a d — bb form factor g(q) = go/(¢* + %) with ¢ denoting
the relative momentum between the two outgoing bosons. The form factor is normalized as
[ k*dkg*(k)/(B + ’:n—2)2 = 1 with B being the binding energy of the two-boson subsystem.

After partial wave projection, the AGS equation in each partial-wave is

X000, E) = 20,0, B) + [ 0PdpZ (s, p, E)7(p, E)X (0, b0, E) (85)
where X (p, po, E) is the half-off-shell bd — bd scattering amplitude. The one-particle ex-

change driving term Z(p/,p, E) and the propagator 7(p, E) are calculated by using the
familiar non-relativistic kinematics. In the center of mass system, they are

Z(p\p, E) = 1/1 drPr(z)— 190 = 130
2/ (I + 501° + 52) (I + 391> + B)
1
X - - (86)
E_é)_m_g_m_(erp) +Z€
T_l(va) - (EQ(paE)+B)
A= (B B+ B) [k I
(B + %) (Ea(p, E) — I +ie)

where L is the orbital angular momentum, Fy(p, E) = E—3p*/4m, and Pr(z) is the Legendre
polynomial with x = p’ - p.
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FIG. 14: Logarithmically divergent moon-shape region of the matrix elements Z(p’, p, E') of Eq.(85)
of the Amado Model. p, p’ and E are in unit of h = 2m = 1 with £ = 1.

Besides the 2-body bound state pole at Fy(p, E) + B = E — 3p*/(4m) + B = 0, the
interaction Z(p', p, E) in the kernel of Eq.(83) has logarithmic singularity for energies above
the three-particle breakup threshold. With the parameters A = 2m =1, B = 1.5, § = 5,
and the total energy F = 1, one can see from the energy denominator of Eq.(8d) that the
interaction Z(p', p, E) is singular in the moon-shape region of Fig[[4l Since the singularity
depends on both p and p/, it is difficult to solve the integral equation Eq.(BH) by using
the standard subtraction methods. Although there are well-known methods of contour-
deformation to avoid the singularity, we will solve the equation without contour-deformation
by employing the interpolating function. Because mathematical problems of the singular
integral equation (BH) are well discussed in Ref.[74] for example, we will concentrate on the
practical numerical procedures.

Let us choose appropriate grid points {p;} and write the unknown function X (p, po, E)
in terms of an interpolation function S;(p)

X p pOa ZS pzapOaE) : (88)

By inserting Eq.(88)) into eq.(8H), one obtains the matrix equation

X(pj7p07E) ij7p07 Z plap(]uE) ) (89)

where
2 Pt o
K= [PdpZ (0. Byro. E)S(0) = Y [ pdpZ (0,0 B)yr(p. B)S,(0) . (90)

The integration in Eq.(0) can be carried out as precisely as necessary since the interpolation
functions S;(p) are known and the logarithmic singularity can be integrated as [ dzIn(z) =
xIn(z) — z. The integration over the 2-body bound state pole of 7(p, E') can be worked out
by using the standard technique of pole subtraction.

The choice of interpolation functions S;(p) depends on the property of the function to be
interpolated. For example, the Lagrange interpolation polynomials are employed in Ref.[74]
with some care near the breakup threshold. In the case of polynomial interpolation, however,
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FIG. 15: Half-off-shell amplitude X (p, po, F) of Eq.(85) of the Amado Model. p and pg are in unit
of h =2m =1 with E = 1. The dot-dashed curves are from deriveing term Z(p, pg, E') of Eq.(85).

some changes in a small region may give rise to global effects. Therefore it is better to use
the spline interpolation which depends locally on the grids points, i.e., the function S;(p)
dominates around the grid point p;. Moreover, the spline interpolation is known to be less
oscillating compared to the polynomial interpolation.

Spline functions are defined in terms of piecewise polynomials which are connected
smoothly over the whole region. Since cubic splines are mostly employed, we will explain
it in some detail. There are several kinds of spline functions depending on the condition
of continuity. Among them, natural splines and Hermitean splines are very useful. Their
characteristic properties are:

(1) natural splines: first and second derivatives are continuous at the grid points. It is
a global spline in the sense that the function S;(p) depends on the whole grid points. It is
known that the natural spline interpolation has a minimum curvature property.

(2) Hermitean splines: Only first derivatives are continuous at the grid points. It is a
local spline in the sense that the function S;(p) (p; < p < piy1) depends on 4 grid points
{pi-1, pis Pit1, Diva}-

Since the practical ways of calculating the spline functions S;(p) are well described in
Ref.[75] for natural splines and in Ref.[76] for Hermitean splines, we will not repeat them
here.

The choice of spline functions certainly depends on the behavior of the solution X (p, po).
As is well-known, there appears a square-root singularity at the breakup threshold [74]. More
precisely, the amplitude X (p,po, E) goes like (pp — p)**'/? ( ¢ is an angular momentum
of the 2-body bound state) below the breakup threshold pg. Therefore, in the case of
¢ = 0, the derivative is not continuous at pp and there appears a sharp change of the
amplitude. The straightforward application of the spline interpolation is not suitable since
it requires the smooth continuation. One of the ways to take into account this singular
threshold behavior is to divide the whole region [0, co] into two regions [0, pg| [pg, o], and
employ Hermitean spline interpolation in each region. It is also recommended that the
grid points are suitably modified to account for the singularity near the breakup threshold,
e, p = /p5—p* (p < pg) and p = \/p? —p% (p > ps). In order to check the spline
interpolation for the square-root singularity, it is a good exercise to fit the simple model
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function ei1)2
_ <z <
f(x):{a z?) 0<z<l1 (1)

(22 — 1)1 /2e 1<z<oo

and to examine the accuracy of the interpolation. This exercise also will give some idea
about the distribution of the grid points.

Now we will explain how the spline function method works in a calculation of Eq.(8H)
for the Amado model with the parameters » = 2m = 1, B = 1.5, § = 5, and the total
energy F = 1. As discussed above, the interaction Z(p',p, E) given in Eq.(8d) is sin-
gular in the moon-shape region of Figlld. To choose the grid points for solving Eq.(8H)
with the input Eqs.(86l)-(T), we first identify some typical momenta: the on-shell mo-

mentum py = /4m(E + B)/3 of bd elastic scattering, the tips of the moon-shape re-
gion on the coordinate axes pe,q = VmkE, the breakup threshold pgp = /4mFE/3, and

p» = \/m£E/3 at which the moon-shape boundary has its maximum value from each co-
ordinate axis. We then choose p, = 0, p, = /mE/3 = 0.408, p. = Penga = VME =

0.707, pg = pp = \/4mE/3 = 0.816, py = py = \/4m(E + B)/3 = 1.291, p; = pmax = 20
and p. = (ps + ps)/2 = 1.053. These momenta are chosen to make 6 regions as
Ra = [paa pb], Rb = [pba pc]aRc = [pca pd],Rd = [pda pe]aRe = [pea pf]va = [pf7pg]'
In addition to the grid points of those typical momenta, we prepare {2,2,4,3,3,9} grid
points in each region respectively, and thus 30 mesh points are used in solving the matrix
equation Eq.([8Y) . They are distributed in equal space for R,, R, and R., while modi-
fied grid points p) are equally spaced near the breakup threshold for R. and R4. In the
region Ry, grid points are distributed as geometrical series with the ratio r = 1.5 ii.e.,
p = 1.291, 1.456, 1.704, 2.075, 2.632, 3.468, 4.722, 6.602, 9.423, 13.65, 20 .

In order to evaluate the integral Eq.(@) accurately, we have employed 4-point Gauss-
Legendre integration formula for each interval [p,, p,y1] which has no singularity. For the
interval including the logarithmic singularity, we have changed the integration variable by
explicitly taking account the location of the singularity as

Pr+1 to
/ dpF(p) = [ di32F(ps + %), (92)
p

n —t1

where py (pn < ps < pny1) is the singular point. The variable is changed as p = p, + t* and
t1 = (ps — pn)l/ 3ty = (puy1 — ps)l/ 3. This manipulation explicitly removes the logarithmic
divergence from the integrand.

Thus, we have prepared two kinds of mesh points, i.e., one is the grid points {p;} at
which the solution X (p;, po, F) is to be found by solving the matrix equation Eq.([8d), and
the other is to carry out the integration of Eq.([d) as precisely as required.

The calculated amplitude X (p, po, F) for zero total angular momentum are the solid curve
(real part) and dashed curve (imaginary part) shown in FigllH, which can be compared
with the similar calculation of Ref. [77]. The amplitude X (p, po, E) is dimensionless and
normalized as X (pg,po) = (ne*® — 1)/(2i) at the on-shell point. One can see clearly the
square-root singularity at the breakup threshold. We have also carried out the calculation
with natural splines. Although natural splines are not suitable for the square-root singularity,
it is practically possible to imitate the singularity by distributing many grid points around
the breakup threshold. For example, the elastic amplitudes calculated by two different
splines agree within the accuracy of 1%, since the on-shell point is away from the breakup
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threshold. In practice, both amplitudes coincides fairly well except for the small region
around the breakup threshold. In Figl[H we also show the contribution (dot-dashed curve)
from the driving term Z(p,po, E) defined by Eq.([86l). Its differences with the solid and
dashed curves clearly show that the multiple scattering effects are very important.

The method described above can be readily extended to solve the coupled-channel equa-
tion Eq.(B8). To be more specific, let us consider the case of F = 1.88GeV. As discussed

in the previous section, the partial-wave matrix elements of the driving terms Zﬁi)ﬂr A and

Z[()?W A of Eq.(BO) diverge logarithmically in the moon-shape regions shown in Figl2 To
choose the grid points for applying the spline function expansion method, we first select the
following momenta

Po = 07 (93)
m
_ s 94
h i + M Ds ( )
1
P2 = 51, (95)
1 1/2
p3 = [1<E - mN)2 - mi} ) (96)
my
_ 97
Pr= P (97)
—1 m2 — m? 2 2
. _ Do —ON Y 2
Ps = 4 <E my + E —m, ) mw] ) (98>
_ 1/2
1 m2 — (my + my)? ?
- 1/2
1 m2, — 4m2\>
pPr = Z <E —+ %) - m?\,] y (100)
- 1/2
1 m2, —m2\>
ps = 1 (E + %) — m?\,} . (101)

The momentum pg is the on-shell momentum of the wN state. pg(p;) corresponds
to the momentum at which the invariant mass of the 7N (7m) subsystem of the
7N state is mis = my + m; (2m;). This momentum can be considered as the
"breakup” threshold of the unstable particle channels 7A (pN and oN). Specifically,
we take {po, p1, P2, P3, Ps» Pes P7y Psy Pmac) for m-spectator channel (wN,7A), and
{po, P1, D2, P4, D5, D6, P7y Ps» Pmaz) for N-spectator channel (pN,oN). For example,
numerical values at £ = 1.88 GeV are : p; = 80.29, py = 334.8, p3 = 448.7, p, =
539.1, ps = 605.8, pg = 619.4, p; = 669.7, ps = 696.3 and p,.. = 6000. For 8 regions
Ry = [po, p1], Ro = [p1, p2l,---, Rs = [ps, Pmaz), We prepare {3, 3, 3, 3, 3, 3, 3, 8} grid
points. The distribution of the mesh points and the integration over each region are the
same as those for the Amado model.

It is a rather complex numerical task to get accurate solutions of Eq.(BH). We check our
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numerical accuracy by reproducing the following optical theorem within 1%

47 N . .
?]m[tMB,MB(Q = 0)] = Z OMB,M'B' + OMB,rnN (102)
M'B'=7tN,nyN,yN

where M B = nN,nN, N are stable particle channels, the cross sections 0, are calculated
from the non-resonant amplitudes %, s by solving Eq.(BH). The two-pion production
cross sections Gyrp -y are calculated from the amplitudes Eqs. (@)-(E4)) with resonant am-
plitude 3 35 = 0.

VI. RESULTS

Our main interest in this paper is to use the numerical methods described in section

V to examine the dynamical consequences of the one-particle-exchange interaction Zfri)’ﬂ A

Z[()?W A, and ng)m A (FigB). As illustrated in Figl[3 and discussed in section IV, the ma-
trix elements of these interactions have logarithmically divergent structure due to the 77 N
unitarity cuts which are not accounted for in all of the recent calculations of two-pion pro-

duction. The parameters needed to evaluate the partial-wave matrix elements of Zfri)m Ao

Zﬁ?w A, and Zg,)’ﬂ A are fixed by the fitting the low-energy 7N and 77 scattering partial-
wave amplitudes, as given in Appendices D and E. With the resonant amplitudes also fixed
by using the information of PDG to evaluate Eqs. (B6)-([2), our first task is to choose the pa-
rameters of starting Lagrangians, given in Appendix A, to evaluate the partial-wave matrix
elements v7'qypp psrp(K, k) defined in Appendix C and vg%,M,B,,MAN(k’,q) in Appendix
F, with MB,M'B" = #N,nN,wA, pN,ocN. Here we are guided by the previous works on
meson-exchange models of 7N and NN interactions, as discussed in Appendix A. We also
need to regularize the resulting matrix elements of all of the non-resonant interactions given
explicitly in Appendices C and F. This is done by multiplying each strong interaction ver-
tex in the considered non-resonant mechanisms, illustrated in FigsBHA by a form factor
[A2/(A% + k2)]? with k being the momentum associated with the meson at the M BB vertex
or the meson being-exchanged. We adjust the cutoff parameters A as well as some of the less
well determined coupling constants to get a reasonable description of the Jlab data of invari-
ant mass distributions of yp — 777~ p reactions. With the parameters listed in Tables I-11
of Appendix A, our results (solid curves) of the invariant mass distributions are compared
with the data at W = 1.88 GeV in Figlldl While the improvements are clearly needed,
the chosen parameters are sufficient for our present very limited purposes of investigating
the effects due to 7N cut. No attempt is made here to adjust the parameters to fit all of
the available data of vp — 77 p, 7%7%, 77, This can be meaningfully pursued in a
coupled-channel approach only when the data of TN — 7N, nN, 77N and YN — 7w N,nN
are also considered. Here we focus on the effects due to the 77N cut which are neglected in
all recent two-pion production calculations..

To see the dynamical content of our calculations, we also show in Figllflthe contributions
from each of the unstable 7A, pN, o N channels. The M+, distribution (top panel) is clearly
dominated by the process yp — 7A — 7N (dashed). The peak near M+, ~ 1.23 GeV is
dominated by the yp — 7~ (A*TT — 7 Tp) process, while the shoulder in the M+, ~ 1.4—1.6
region is due to the yp — 7 (A% — 77p) process. The contributions from the pN (dotted
curve) and o N (dot-dashed curve) are sizable and can change the shape and magnitude of
the cross sections through interference effects. The M, +,- distribution (middle panel) is
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dominated by vp — p(p — 7t7n~) (dotted) and hence is peaked at M, +,- ~ 0.76 GeV.
However the contribution from 7A channel (dashed) are clearly important in getting the
good description of the data. The situation for M, -, distribution (right) is similar to that
for M+, distribution (bottom panel), except that the relative strength between two A peaks
is changed.

We now turn to investigating the effects due to the one-particle-exchange driving terms
Zﬁi)’ﬂA(E),ZIE?JA(E), and Z((j,)mA(E) which contain the effects due to the 77 N unitarity
cut, as discussed in section IV. Their singularity structure, illustrated in Figlld is similar
to that shown in Figll4l of the three-boson case. We thus expect that non-resonant partial-
wave amplitudes associated with 7A, pN, and o N states have similar momentum-dependent
structure of Fig[ld This is confirmed in our calculations. Some of our typical results are
shown in Figllq for ¢,a .y and Figll§ for the photo-production amplitudes t.a .~ (upper
panel) and ¢, (lower panel). The solid curves in these figures are from our full calcula-

tions, which show rapid varying structure. When the driving terms 7(ri),7r AE), Z /%)JA(E),

and Z(E,?V)’ﬂ A(F) are turned off in solving Eq.(BH), we obtain slow varying dashed curves.
Here we note that the momentum variable k£ in Figs[ITHIS is related to the sub-energy
o(k,E) = E — E4(k) for the resonant particle (A or p) to decay in the presence of a spec-
tator particle s (m or N) with energy E (k). Thus the full curves in Figs[ITHIS also reflect
the rapid dependence on the sub-energy o(k, E'). We emphasize that the rapid dependence
of these amplitudes on the sub-energy o(k, E') is a necessary consequence of 77N unitarity
condition, as discussed by Aaron and Amado[5], and is similar to what can be seen in the
7NN studies|2], [70, [71]. Our results clearly indicate that the usual tree-diagram approx-
imation should be used with cautions in interpreting the extracted N* parameters. The
rapidly varying structure associated with an unstable particle channels must be taken into
account in any phenomenological extraction of the partial-wave amplitudes. These were not
taken into account in the early partial-wave analyses|78] of the data of TN — 77 N.

If we further turn off the multiple scattering mechanisms in solving coupled-channel
equation Eq.(BH), we get the dot-dashed curves in Figs[[THI8 The large differences between
the dash-dotted curves and the solid curves indicate the difference between the dynamical
coupled-channel approaches and the recent tree-diagram models.

We next examine the effects of the one-particle-exchange terms Z7(FEA)77r AE), Zlﬁ)’ﬂ AlE),

and Z ((j,)ﬂ A(E) on the differential cross sections of yp — 7wt7n~p. Here we set p as the outgo-
ing 77 momentum, ¢ the relative momentum between 7~ and p. Two of our typical results
of the dependence of the differential cross sections do/(dM,-,dS2,dS2,) on the azimuthal
angle ¢ of ¢ are shown in Fig[[A with the final 7% 7~ p kinematics fixed at M,-, = 1.23GeV,
cosf, = 0.183, ¢, = —3.1 rad., and cosf, = 0.80(left),0.183(right). Our full results are

the solid curves. The dotted curves are obtained when Z7(rEA)77r As Zé?ﬂ A(FE), and ng),n A(E)
are turned off in solving the coupled-channel equation Eq.(BH). Clearly, the effects due to
these one-particle-exchange terms are very pronounced in changing both the shapes and
magnitudes of the differential cross sections. Similar results are also seen in our calculations
for other values of p of the outgoing 7+ and ¢ of the relative momentum of the outgoing
7~ p system. The results shown in Fig[l9 further indicate that the rapid varying structure
of the amplitudes shown in Figs[[THI] must be accounted for in any analysis of two-pion
production.

In the recent studies of two-pion production, the data of invariant mass distributions

do/dM,xn and do/dM,, of YN — 7w N are most commonly used to extract N* parameters.
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FIG. 16: The differential cross sections of yp — 77~ p reaction with respect to the invariant mass
M+, (top), My+,— (middle), and M, -, (bottom) at W=1.880 GeV. The data are from Ref.[57].

The solid curves are from full calculations, The contributions from 7A (dashed), pN (dotted) and

+

oN (dot-dashed) to the invariant mass distributions of vp — 77~ p are also shown.
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FIG. 17: The half-off-shell amplitudes t}Aﬂr ~n(k, ko, E). The invariant mass of the outgoing A is
1.232 GeV and the total energy is E=1.880 GeV. The left (right) hand sides are the real (imaginary)
parts of the amplitudes with 7N in Sy; (top) and Ps; (bottom). The partial-wave quantum
numbers for A state are indicated in each figure. The solid curves are from full coupled-channel
calculations. The dashed curves are from setting Z7(FEA)77r AE) = Z[()?W AE) = Zé?v),w A(E) =0. The
dot-dashed curves are from further setting multiple scattering terms of Eq.(55) to zero; i.e. setting
fi?:q’M'B',LSMB(k,’ k,E) = Ui;’;"M'B’,LSMB(k,’ k,E). Note that the matrix elements of vza N are
real in our phase convention (see Appendix A) and hence there is no dot-dashed curves in the right

hand side.

Since these cross sections involve integrations over angles of outgoing particles, as seen
in Eq.([), the rapid varying structure of the partial-wave amplitudes due to 77N cut is
washed out. We thus see the smooth distributions do/dM,y and do/dM,,, as shown in
Figs[Tdl However the one-particle-exchange terms ZSZ)JA(E), ﬁ?wA(E), and Z((j,)m A(E)
can change their magnitudes and shapes significantly. One example is shown in in Fig PO
for yp — 77%. We see that when these one-particle-exchange driving terms are turned off
in solving coupled-channel equation Eq.(RH), the predicted invariant mass distributions are
reduced significantly. Such a large difference further indicate the importance of including
the 7w N cut effects in calculating these particle-exchange terms for analyzing the two-pion
production data.

VII. SUMMARY AND FUTURE DEVELOPMENTS

For analyzing the meson production data in the nucleon resonance (N*) region, we have
developed a dynamical coupled-channel reaction model. With the assumption that the ba-
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FIG. 18: The half-off-shell amplitudes ;s ,n(k, g, E) (upper) and tApNﬁN(k:,q,E) (lower). The
invariant mass of the outgoing A (p) is 1.232 GeV (0.76 GeV) and the total energy is E=1.880
GeV. The partial-wave quantum numbers for the final 7A and pN states are indicated in each
figure. The solid curves are from full coupled-channel calculations. The dashed curves are
from setting Z7(FEA)77r AE) = Z[()?W AE) = (S?V)W A(E) = 0. The dot—daiged curves are from fur-

. . . Lo . N / _
ther setting multiple scattering terms of Eq.(65) to zero; i.e. setting tLSMB,)W)\NmTN (k' k,E) =
iy B Anmry (K',k,E). Note that the matrix elements of vza yn (UpnynN ) are pure imaginary
(real) in our phase convention (see Appendix A) and hence there is no dot-dashed curves in the
right (left) sides of the upper (lower) parts.

sic degrees of freedom of the considered reactions are mesons (M) and baryons (B), our
starting point is an energy-independent effective Hamiltonian which is derived from a set of
Lagrangians by using a unitary transformation method. Within the constructed Hamilto-
nian, the N* excitations are defined by bare N* — MB,nmwN vertex interactions and the
non-resonant meson-baryon interactions are defined by the tree-diagrams generated from the
considered Lagrangians. We then apply the standard projection operator techniques[64] to
derive coupled-channel equations for calculating the amplitudes of meson-baryon reactions.
The model satisfies the unitary conditions within the channel space spanned by the con-
sidered two-particle meson-baryon states and the three-particle 7w N state. In this paper,
we present explicit formulations within a Fock-space spanned by the basis states YN, 7N,
nN, 7A, pN, oN, and 7w N. However, the formulation can be straightforwardly extended
to include other meson-baryon states such as Kaon-Hyperon (KY) and wN, and other two
meson production channels such as na N and KKN.

To facilitate the interpretations of the extracted N* parameters, we cast the reaction
amplitudes into a form such that the meson-baryon scattering effects on N* excitations
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FIG. 19: Differential cross sections of yp — 77 p at the YN invariant mass W=1.880 GeV. The
outgoing 7 momentum is p and the relative momentum between 7~ and p is ¢. ¢ is the azimuthal
angle of ¢. The results are for the invariant mass M-, = 1.23 GeV, cos 0, = 0.183, ¢, = —3.1 rad.
The left (right) panel is for cos§, = 0.80(0.183). The dashed curves are obtained when ZJ(MEl)a,MfB

term is turned off in solving Eq.(65).
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FIG. 20: The invariant mass distributions of yp — 7%7% reaction at W=1.88 GeV. The dashed
curves are obtained when Z](‘ﬂ; g term is turned off in solving Eq.(65).

can be explicitly calculated. These effects, called the meson cloud effects, are due to the
mechanisms that the incident meson interacts with the baryons through all possible non-
resonant scattering before the N* is excited by the bare N* — MB vertex interaction
of the model Hamiltonian. The determination of the meson cloud effects from the meson
production data could be useful for interpreting the extracted N* parameters in terms of
hadron structure calculations. For example, it was found in Refs.[10, [L1] that the meson
cloud effects can account for the main differences between the extracted YN — A (1232)
resonance transition form factors and the constituent quark model predictions. It will be
interesting to explore how the meson cloud effects, as defined in our formulation, can be
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related to the current Lattice QCD calculations.

In addition to giving a complete presentation of our theoretical framework, we also present
in this paper a numerical method based on a spline-function expansion for solving the
resulting coupled-channel equations which contain logarithmically divergent one-particle-
exchange driving terms. These driving terms contain the effects due to the 77 N unitarity
cuts which must be included accurately in calculating the two-pion production observables.
We explain how this method can be applied in practice for a simple three-boson Amado
model, and then for our realistic model with vV, 7N, 7 A, pN,oN, and 7w N channels.

An another important step in carrying out numerical calculations is to find an efficient
way to calculate a large number of partial-wave matrix elements of the considered non-
resonant meson-baryon interacting terms which are needed for solving the coupled-channel
equations. Here we make use of the helicity representation of Jacob and Wick and also
introduce a helicity-LSJ mixed-representation which is most convenient for calculating the
electromagnetic matrix elements. While these are rather technical details, but are also
presented explicitly in this paper for the completeness in explaining our numerics.

With the parameters of the model chosen appropriately to fit JLab’s two-pion photo-
production data, we apply the developed numerical methods to show that the logarithmically
divergent one-particle-exchange driving terms in the constructed coupled-channel equations
generate rapid varying structure in the matrix elements of reaction amplitudes associated
with unstable particle channels 7A, pN, and o/N. Our results confirm the analysis by
Aaron and Amado[d]. We further show that these one-particle-exchange terms have large
effects in determining the two-pion production differential cross sections both in shapes and
magnitudes. Our findings suggest that one needs to be cautious in interpreting the N*
parameters extracted from the approaches which do not account for the effects due to the
7w N unitarity cuts.

The calculations presented in this paper are far from complete within our formulation,
while they are sufficient for testing the accuracy of our numerical methods and illustrating
the importance of w7 N unitarity cut. The N* parameters can be convincingly extracted
and properly interpreted only when we apply our full formulation to analyze all available
data of meson production reactions. Obviously this is a rather complex process. We now
discuss how we will accomplish this rather ambitious research project in practice.

Our first task is to fit the 7N elastic scattering data to fix the parameters defining the
strong interaction parts of the model Hamiltonian Eqs.([d)-([[@). This must be done by
extending the coupled-channel calculations described in section IV in two aspects, First, we
must include the driving term ZJ(\?B, v defined by Eq.[BI). As discussed in section III,
this term contains the 7w N cut effects originated from the 7NN vertex. Our second main
task is to develop appropriate parameterizations of the bare N* — M B form factors for
calculating the resonant amplitudes rigorously according to Egs.([H)-(Id). Here we need to
make use of the predictions from hadron structure calculations. For example, we at least
can fix the relative phases between different N* — M B transitions by using the naive SU(6)
quark model with meson-quark coupling. Predictions from more sophisticated models, such
as the 3Py model of Ref.[79] and the model based on Dyson-Schwinger Equation[8()], could
provide useful information to our investigation. In fitting the 7V elastic scattering data, we
should also fit the available 71N — nN reaction data and use the optical theorem to make
sure that the predicted wN total cross sections are also in agreement with the data.

Once the 7N data are fitted by the above procedures, most of the strong interaction
vertexes in the non-resonant electromagnetic interactions v,y arp and vyn—_.r-n of our model
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Hamiltonian have also been determined. We thus can focus on the determination of YN —
N* form factors. From Eq.([d), one can use the operator relations Eqs.(B32)-(B33) of
Appendix B to write the dressed N* — N vertex of the resonant amplitude (Eq.(H)) as

Cneoyn(E) = Tyvyn + Z IneomBGue(E)tup n(E)
MB

= Inoeyw + O PveeisGrs(E) g - (103)
MB

Since I'y«_ g in the second line of the above equation has been determined in the fit to
the mN reaction data, the bare N* — N vertex I'y«_,n is the main unknown and can
be determined by fitting the data of photo-production and electro-production of 7,7 and
two pions. Of course some less well-determined parameters in the non-resonant interaction
vyn, v should also be adjusted in the fits. In practice, one can extract bare N* — yN
form factor at each Q2. It of course will be more interesting if the parameterization of the
bare form factor I'y+«_.,n can be guided by some theoretical calculations.

We now turn to discussing the extension of the model to include K'Y and wN channels
which are also useful in probing the structure of N*. In particular, we note that n/N, KA, and
wN channels are of isospin 7' = 1/2. The properties of T'= 1/2 N* states can therefore be
more selectively extracted from analyzing the production data of these three channels. Thus,
an extension of the formulation presented in this paper to include K'Y and wN channels
is highly desirable and technically straightforward. However, it will increase the needed
computation effort enormously. Nevertheless, we can make use of the results from fitting
the 7N, nN and 77N data to perform simplified coupled-channel analyses of the K'Y and
wN production data. This can be done by following the approach of Ref.[81].

Considering the K'Y production, we assume that it can be described by a coupled-channel
model including vN, K'Y, 7N, and a dummy channel ) which represent all of the neglected
channels. If we further assume that K'Y does not couple directly with the QQ state (mainly
because there is no information about how KY couples with 77N channels), one can cast
the coupled-channel equation Eq.(24)) into the following form

tyvky (E) = vynry[l + Gry (E)tkyky (E)] + 0ynanGen (E)trn ky (E) (104)

with
tyy(E) = vil oy (B)1+ Gry (BE)ty.iy(E)], (105)
tKY,wN(E> = [1 + tKy,Ky(E)GKy(E)]UKYJFN[l + G’TI’N<E>£7TN,7TN<E):| . (106)

Here the effective K'Y interaction is defined by
U%};Ky(E) = Uy Ky T VkyanGrn(E)[1 + TEWN,WN(E)GWN(E)]UWN,KY ) (107)

and &,y . is from solving the coupled-channel equation Eq.(24)) in the 7N @ QQ space.

If we assume that the dummy channel QQ) = nN®rTAGpN Do N, the scattering amplitude
i ~xn in the above equations is just the solution of Eq.(24) of the model determined in the
fit to 7N data described above. We therefore can use this information to solve Eqs. ([{Ia])-
(070 and determine the parameters associated with the non-resonant interaction vgy, .y
and vy gy by fitting the available data of 7N — KY reactions. This will then allow us
to generate txy ky and t,n gy to evaluate Eq.([0]) and also fix the strong vertexes in the
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non-resonant v,y xy. The KA photo-production and electro-production data can then be
used to extract the yN — N* form factors for 7' = 1/2 N* states. The same procedure can
be used to analyze the wN production data.

To end this paper, we would like to emphasize here that the objective of performing
dynamical coupled-channel analyses of meson production data is not only to extract the
N* parameters, but also to provide information on reaction mechanisms for interpreting the
extracted N* parameters in terms of the quark-gluon substructure of hadrons. In particular,
we account for the dynamical consequences of the 77N unitarity condition which is very
difficult, if not impossible, to be treated rigorously in the existing approaches for calculating
the hadron structure or the Lattice QCD calculations. An another important point to note
is that our approach accounts for the off-shell scattering effects which describe the meson-
baryon scattering wavefunctions in the short range region where we want to explore the
structure of N*. These essential quantum-mechanical effects are absorbed in the parameters
of the approaches based on tree-diagram models or K-matrix models. Thus our dynamical
approach perhaps has a better chance than these two approaches in revealing the quark-gluon
substructure of baryons. Our progress in this direction will be published[67] elsewhere.

We would like to thank B. Julia-Diaz and K. Tsushima for their help in checking our
calculations of the matrix elements of non-resonant interactions. This work is supported
by the U.S. Department of Energy, Nuclear Physics Division, under Contract No. W-31-
109-ENG-38 and the Japan Society for the Promotion of Science Grant-in-Aid for Scientific
Research (C) 15540275.
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APPENDIX A: LAGRANGIAN

In this appendix, we specify a set of Lagrangians for deriving the non-resonant interactions
varp v Which is the input to the coupled-channel equations Eq.(24]). Here we are guided
by the previous works on meson-exchange models of 7N and NN interactions. The coupling
with pseudo-scalar mesons 7 and 7 are consistent with chiral symmetry. The vector meson
couplings are less known and are mainly constructed phenomenologically. In the convention
of Bjoken and Drell[82]), the Lagrangian with 7, n, N, and A fields are

L:ny = —f:r]LVNwNW%ﬁ/)N'auéf;n (Al)
_ JaNa -

Lova = ~L225 Py 0,6, (42
I /NN >

Loan = - Va5 Tats - 0,0 (A3)
_ anN - "

Lyny = — = YNV Y5 YN Dy (A4)

n

The interactions involving p meson are

—

— K v = T
LpNN = gpNN@/)N[W - ﬁ%ua ],0“ : §¢N, (A5)
f NA - v = — —
LpNA = —1 :n TPZ’Y /75T : [a,upu - &/WWN + [hc] ) (A6>
p
— K . — .
Loan = Gpantaa[Y" — HUW&/]/)M NN (A7)
QTTI,A
Lp7r7r = gpﬂw[(b_;r X a,u(b_;r] : /3#7 (A8>
_ f’TI'NN i — = _)
LNNpT( - m gpNN'QZ)N%/YST’(/)N s ptt X ¢7ra (AQ)
HpgiNN T V= — —
LNNpp = _7wN0-ﬂ T’l/}N “Pu X Py <A10>
SmN

Note that the contact terms Eqgs.[A9)-(AI0) are from applying [0* — 0" — g,nnp" %] on
Lﬂ-NN Eq(m]) and LpNN EQ(M)

The interactions involving w meson are

_ Ky .
Lonn = ngNi/JN[’Vu - mn J;u/a ]wﬂwz\h (AH)

Lump = —%ew,\yﬁapﬁa)‘qiw” . (A12)

w

We also consider interaction involving a scalar isoscalar o meson

Lonn = goNN”vENwNQbO (A13)
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TrNN

f7rNA Rp GwNN Kw Y9pNNYprnrm
0.08 2.049 1.825 115 0  38.4329

TABLE I: Coupling constants determined in Ref.[10].

Jprnr  Yorm Gurp YpNN anN 9oNN fran prA prA RpAA
6.1994 1.77 11.2 6.1994 1.77 12.8 1.78 -6.08 -4.30 6.1

TABLE II: Coupling constants used in the calculations in this paper.

Gorm g g
L = — H . Al4
oin = 5 06:0,6:0, (AL4)

To proceed, we need to know the coupling constants of the above Lagrangians. The
parameters determined from fitting the 7N data within the SL model[1(] are given in Table
[. The p,0 — mm coupling constants can be estimated from fitting w7 phase shifts in the
isobar model[6]], as described in Appendix C. The decay width of w — 7p can be used to
estimate the coupling constant g,r,. The nNN coupling constant f,yn has been estimated
in recent studies of 7 production from 7N and yN reactions. The ¢ NN coupling can be
estimated from the previous works on NN scattering. These parameters are adjusted around
the values from these estimates to fit the JLab data of yp — 77 p reactions, as described
in section VII. They are listed in Table II.

We have very little information on the coupling constants fraa, fva, and foan. We
simply follow the previous works and use the simple SU(6) quark model to determine them
from the empirical values of the coupling constants fryx and g,nn. To be more informative,
we here also describe how this procedure is used in practice.

First step is take the static-baryon limit of the matrix elements < B'|Lypp|BM(q) >
to define the effective M BB’ Hamiltonian operators in the spin-isospin space of baryons.
They are

Hﬂ'NN = ifﬂNN&'JTa7 <A15)
Hﬂ'NA - ifﬂNAg'ﬂaa (A16)
mﬂ'
TAA 2 =
Hosn = 222225, 13 (A17)
g NN(l +Rp)  a o a
H,nn = pTNp x q-€lp)t*, (A18)
Howa = —i1225 5 g )T (A19)
mp
. 1+ &k 25
HpAA = _ngAATpAA SA X q GpTA (AZO)
ma

Here, « is the isospin component of the considered meson, S and T are the spin and isospin
operators of the N-A transition, S and Th are the spin and isospin operators of the A.
Along with the usual Pauli operators ¢ and 7, they are defined by the following reduced
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matrix elements

< N||o||[N > = < N||7||N >= 6, (A21)
< Al|S||N > = < A||T||N >=2, (A22)
< Al[SAl|A > = < A||Tal|A >= V15 (A23)
with the convention that
4 . 1 . 4 .
< jpmslOnlgim; >= N drmylgdm:M >< j||O'||j; > . (A24)
Jf

We next consider a simple meson-quark interaction Hamiltonian

Hrgq = ray > i - g, (A25)
Mr =13

Hpgqg = U Y 00 X Gy, (A26)
P i=1,3

where o0;, 7; are the spin and isospin operators of the constituent quarks. By using the 0Os
constituent quark wavefunctions ¥ m, m,, and ¥am,, m., for the nucleon and A and the

relations Eq.([A21)-([A24), we have the following relations between the matrix elements in
the spin-isospin space

< UNgmg | D OTil N mmey > = 3 < ml, m._ |oTim, m. >, (A27)
=13
< Vamy me, | D Tl < ONmaymey, > = 2V2 < ml oml |ST|m, m. >, (A28)
i=1,3

o 4 =
< ¢A,mgAm;A| '2130i7i|wA7msAmTA > = 3 < 771;AWL,TA|SATA|WL5ATHTA > . (A29)
=1,

Using the above formula and assume that the matrix elements of the hadron Hamiltoni-
ans Eqs.([ATH)-([A20) are equal to the matrix elements of the quark-meson Hamiltonian
Eqs.[(A23)-[A28) within the SU(6) chiral constituent quark model

< VB, [ H g VB ey, >=< M,y | Hypp My, My >, (A30)
we then obtain

favn = = fran, (A31)

fana = 2V2fngq, (A32)

%fﬂAA = %fﬂqq, (A33)

foxx = 2 foun (A34)

fova = =2V2fpy, (A35)

%prA == %quqv (A36)
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where we defined

gonn (1 + Kp)
prN = pTNpmp, (A37)
14+ KpAA

. (A38)

prA = GpAA

From the above relations we finally have

fana = \/7f7r1\w, (A39)

fWAA = _fﬂNNa (A40)
fona = \/7prN> (A41)
prA = __prN <A42)

By using the vector meson dominance assumption and the recently determined A magnetic
moment, we can set

RpAA = 6.1. <A43)

With the values in Eq.([A43) and values listed in Table I, we can use Eqs.([A37)-([A42) to get
fran, fona and foaa. The resulting values are also listed in Table II.

The electromagnetic interactions are obtained from the usual non-interacting Lagrangian
and the above interaction Lagrangian by using the minimum substitution 9, — 0, —ieA,.
The resulting Lagrangian are given below :

LA/NN = JJN[éN’Vﬂ T 5 al UW@VWNAW <A44)
my
L'y7r7r - [(Eﬂ x o 57r] A ) <A45>
Livew = T o) x sy, (A46)
Lopp = [(0"p7 = 0" ph) X fiJ3 A, (A47)
Lyprr = gpm[(/)_[‘ X ¢7r) X ¢r]3A (A48)
. fWNA w g
L'yNWA — m, [(wATwN> X ¢7r] ) <A49>
L,non = gpNN[Q—p(¢N§UW@/)N) X polsAu, (A50)
Lyna = =T A Typy A + (hoc.) (A51)
L’ypn = E,]r;ﬂﬂ/eozﬁﬂ/égbw ( 6)(60145)’ (A52)
Lnim = 5005 (00 A%) 6307, (A53)
Lypy = Mewaﬁaupiaaflﬁ‘bnv (A54)

mp
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Lo = =S Bupf) (0" A" = A (A55)
Lisa = UATR + )0 + (60" + g7 + sv nlii A (ABO)
For Eq. ([A44), we have defined
é:Ei%@Ei (A57)
g:ﬁi%@ﬂi (A58)

where Fi5(0) = Fiy(0) =1, F55(0) = pp + ptn — 1 ~ —0.12 and Foy (0) = pp — po, — 1 ~ 3.7
The matrix element of yNA vertex of Eq. (A49) between an N with momentum p and a A
with momentum pa can be written explicitly as

ma + mpy 1
2my  (ma +my)? — ¢?
X[(GM — GE)3€MV045PO((]5

12 o A 1
(ma —my)? — ¢ €urap P qﬁe vasPAG

—4u(*P, —q- Pg,)],  (A59)

(ma —mn)* —q

< A(PM)ITA N (py) >=

+GEis

+Giys

with P = (p/\ + pn)/2 and p/y = pny + ¢. Note that the index u of FZ’ZLA contracts with the
A field and v with the photon field. The coupling strength G,; = 1.85, Gg = 0.025, and
G¢ = —0.238 are taken from the SL model[10, [11].

APPENDIX B: DERIVATION OF COUPLED-CHANNEL EQUATIONS

In this appendix, we give the derivation of coupled-channel equations from the model
Hamiltonian H.;r = Hy + V defined by Eqs.(@)-([[d). We apply the standard projection
operator techniques[64]. The procedure is similar to that used in the derivation of 7NN
equations[6i]. We start with Eq.(2)

1
E — Hy

T(E)=V+V T(E). (B1)

The propagator in the above equation is understood to include +ze for defining the boundary
condition, but is omitted to simplify the presentation in this appendix. The interaction V,
defined in Eqs.([)- (), can be more clearly written as

V = vy + v33 + (I'12 + uas + 713) + (Fag + use + v31) , (B2)

where vy = UMBM' B+ Unr, e = UnemB + A With M* = p,o, 13 = Ive—rnn,
U9s = UMBraN, aNd Usg = Unrnron. Here we restrict MB = yN, 7N, nN,7A, pN,oN. In
Eq.(B2), we have also introduced more transparent notations I'y; = T'ly, ug3 = ubs, and

V31 = 713-
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We next introduce projection operators

P+Q=1 (B3)
with

Q = |mnN >< 7 N]|, (B4)
P:P1+P2+P2*, (B5)

where
P =Y |N* >< N*[, (B6)

N*

Py, = |yN ><yN| + |7tN >< nN|+ |nN >< nN|, (B7)
Py, = |tA >< 1A+ |[pN >< pN| + |cN >< oN]|. (B8)

We then obtain the equations for the projected operators Tpp = PT'P and Top = QTP

Tpp = VPP+VPPE_HOTPP, (BQ)
1
Tor = Vor[l + Trp], (B10)
L= Voo vag E = Ho
where
Vep = Vpp + Vpq © Vop (B11)
E—Hy— Vg ’
with
Vpp = PVP= V22 + Flg + Fgl s (B12)
Vop = QVP = uzy + a1 + 71, (B13)
VQQ = QVQ = U922 + V33 . (B14)
Eq.(BII) can be written explicitly as
Vpp = Pl(vaa 4+ g + To1) + (uas + 7113 + T'12)Go(use + v31 + '] P, (B15)
with
e < (B16)

T E- Hy — Q(va2 +v33)Q

From the definitions Eqs. (BA)-(BY) for the projection operators, we have the following con-
ditions

P2F12Q = QF12P2 = 07
Poyn@Q = Poyn@ = Qyalh = Qs P = 0. (B17)

With the above ”doorway” conditions, we can decompose Vpp as

Vpp = P[X +7]P, (B18)
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where
Y = [F12GQP21]un—connected~ (Blg)

Here un — connected in Eq.(BIJ) means that the pion emitted from one baryon is also
absorbed by the same baryon. Obviously this is the self-energy of the unstable particles in
the 7A, pN and o N states of P, space. We thus have

PYP = PSP . (B20)

All other interactions within the P-space are in v of Eq.(BIS)

ﬁ:VE+f12+f21+i} <B21)
with
Ve = v + (u2s + ['12)Go(use + yy) — 3, (B22)
Ty = Doy + +ATy, (B23)
I'9 = Tig + +ATDs, (B24)
S = 113Gqys (B25)
where Af‘gl and Afu contain interactions due to N* « 7w N transitions
Afm = [ug3 + PQl]GQ’Ysl ) (B26)
ATy = 113G oluss + o] . (B27)
To follow the derivations given below, we note that the well known operator relations
t + L t
= v+
E — H,
1
= t B28
vHiE T (B28)
lead to
1
t=[- -1
1 - o
1
— o1 — -1 B29
ol - 5= (329)
Egs.([B28) and (B29) then lead to
1 1
1— =14t
L-vg—g] o
1 1
1- =1 t. B30
Eq.([B28) also leads to
1
t= —_. B31
v+vE_H0_vv (B31)
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Comparing Eqgs.(B2]) and (B31l), we have

1 L
’U:
E—HQ—U E—HO’
1 1
— ¢ . B32
YE—H,—v  'E—H, (B32)

It can also easily be seen that

1 1 N 1 . 1
FE—Hy—-v E-Hy E—-—Hy E—H,

In the following derivations, the above relations Egs.([B2]) -([B33)) will be often used without
mentioned them again.

By using Eqgs.(B28), (B31) and (B33)), we can write Tpp defined by Eq.(BJ) as

(B33)

T = P(X > > P
pp = PUS o)+ (C 4+ 0) e (S o)
= PY+X——F— > 1+Y———FF)T5(1+ ——>)|P (B34
[ + E—Hy—X +A+ E—HO—Z) (+E—H0—Z )] ( )
with
P
T-=v+0—-——T;. B
5 U+UE—H0—ZU (B35)
By using Eq.(B13) and relation (B32), we can write Eq.(BI0) as
P
TQP = Q[(1+tQE_ HO)(U?,Q +731 +F21)[1 + E— HOTPP]P, <B36)
where
tQ = VQQ +VQQ7Q tQ (B37)
FE— H,

describes 7N — 7w N scattering through Vg = Qvas + v33]Q = Vrn + VaNaN + VraN raN
interactions.

We now derive equations for calculating the scattering amplitudes between two particle
channels in P} = P, + P», space. We first note that

PP, = Vg, (B38)
PyoP, = Ty, (B39)
PP, = T, (B40)
PP, = 3. (B41)
The above relations and Eq.(B35) lead to
PP, = Vit Vo2 prpply by — 10 prpr (B42)
2 E—Hy—% 2772 E —mY. 2
5 5 P . )
P\ TPy = Ty + ruﬁz_zpﬁgg’ + EWHT@PZ’ : (B43)
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Eq.([B43) can be written as
~ 1 Py

PT;P) = [1 = S——] [y + [1o=——2—— P T, P,
TPy = | E—m?v*] T2 + R g oyt 2]
E—-mQ. - A P
= ——1T I'y——>—-=PT;P). B44
E—m?v*—E[ 2t Tep—p =5 AR (B44)
Substituting Eq.(B44) into Eq.([B42), we have
PT,Py= X + XmPQ’T@PQ’ , (B45)
where
o 1 ~
X =Vg+Tyn an : (B46)
Eq.([B43) can be written as
1
PPy = 1 —Vg——"—]"'[V,
2 2 [ EE—HO—Z] [E
+[1 -V, ! s ! T'o[1 + ! PiT;P)]
"E-Hy-% "E-My -5 " T E-H-x *"?
. 1 A 1
=t 1+t r [l + ——-—=PT,P,
E+[+EE_HO_Z] 21E—M]({,*—212[+E—H0—22 )
_ 1 ~
=t yy——— Tl + ————=PT,P,
E+ 21E—M]0V*—2 12] +E—H0—Z > 2]
_ 1 . 1
=t [yg———————T'yp[1 X
E+ 21E—M]0V*—2 12] +E—H0—Z—X ]
_ . 1
=t r I E—Hy—X B47
e+ 21E—M]0V*—Z 12E—H0—E—X[ 0 I ( )
where
1
tp = Vg +Vg——7—=1 B4
E E T EE_HO_EEa (B48)
Ty = [1+tp—— T . B4
21 [+EE—H0—E] 21 (B49)
We further note that
1 B 1
_ Y o r 1 r
F—-—Hy—Y-X E—HO—Z—VE—FQWHFQl
1 1 1
= ts (B50
E-Hy-% Vp E-Hy-% -V, E—Hy—% V' )
with
. 1 A 1
ts =T Lo [1 ts
YEoMY. -3 oy A g
o 1 o
:Plg Pgl, (B51)



where

_ . 1 A
=T r
"E-Hy-»-Vg =
A 1 _
=T r B52
TS (B52)
Here I'y; has been defined in Eq.(BZ9).
By using Eqgs.(B20) and (BEl), Eq.(B47) can be written as
_ . 1 . 1
PPy =t lyj——— =1+ (T r —
T VTS E A -y Ty i A S VTR py
- 1
r E—Hy—X
g sy Ho—
= tp+T ! 143 ! T ! [E — Hy — Y]
ST E oMy -8 E-M}. —S-5% "E—H—-%—Vp 0
_ 1 . 1
=1 r ——=1 E—Hy—X
PR S YEHy, %V o= 2]
_ 1 ~ 1
=1 r —1I'5[1 V
wr EoMy. s —% e+ g, Ve
_ 1 . 1
=1 r —1I'5[1 tp|.
ET 21E—MR[ SIS 12] +E—H0—ZE]
The above then gives
_ 1 _
/ r
TP, =t + Ty T, (B53)
where (also recalling Eq.(B49))
- - 1
' =Tpl+ ———t Bb4
12 12] +E—H0—ZE]’ (B54)
Ty = [1+tp——alar. B
21 [+EE—H0—Z] 21 (B55)

We now turn to deriving equations for calculating two-pion production. For initial 7N

or YN of Py-space, Eq.(B3M) can be written explicitly as
Py
E— Hy

Top, = Q1+ lg )[uzs + ugg TprpP,y

E — Hy

P2* 1
s Po,————Tpp P
+(ugz + [a1) Po 7, PP 2+731E_H0

From definition Eq.(B34), we have
PTppPy = BIGP,
PTppP = PGB,

Py TppPy = P (14X Py, | TPy

E—Hy—X%

1
— PQ*[E — Ho]mPQ*T@PQ .
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(B57)
(B58)
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By using the above relations and Eq.([B53) and P; = P, + Pa,, the 3rd in the bracket of
Eq.([B2f) can be written as

Py. 1 _
—_— —— 15| P B6
E—Hy—% 1E-M%—2—2”]2 (B60)
By using Eq.(B45), the 4th term in the bracket of Eq.(Bh6) becomes

1 1

3rd = (U32—|—F21) [tE—FFQ

dth = yg————— Tl + ————— P, P
ngE—MR,*—Z 12[+E_HO_Z o ]
1 o _ 1 _
= — Tl + ———(¢ I - T
731E—MR,*—Z 12[+E_HO_Z(E+ 21E—MR,*—Z—Z 12)]
1 A 1 . 1 _ 1 _
= yp—= (1l + —————t r r —7T
%nE—MR[*—E[ 12( +E—H0—Z B) +( T 21)E—M]%*—Z—Z 12]
1 _ 1 _
=y ——=|1+ 2 —
731E—M]OV*—Z[ E—M&—Z—Z]u
1 _
= ’Y31E_MR[*_2_2F12- (B61)
We finally obtain
Top, = QQST;)JHU%"‘{U@i+(U32+F21)L}{h§+f21 ——T5}
E — Hy E—Hy—-X E—-M}. —%-%
1 _
+’Y31E_MR[*_2_2F12]P27 (B62)
where
O — (14 19—2—). B63
TN ( + QE—HO) ( )

Here t¢ is defined by Eq.(B37) and hence QT is the N scattering operator.
In the above rather detailed derivations, Eqgs.(B53) and (B62) are what we need to in-
vestigate meson-baryon scattering and two-pion production. In practice, the interaction

Y31 = I'n+ e Will be neglected in first calculations. If we set v3; = 0, we then find from
Eqgs.(B23)-(B27) that

Ty — Doy, (B64)
Iy — D, (B65)
S 0. (B66)
Eqgs.(B52), and (B54)-(B55) lead to
_ 1
r 1l+tp—=——7—=<IT B
21—>[+EE_HO_Z] 21 (B67)
_ 1
r Mol + ———t B
12 — 12[+E_HO_ZE]> (B68)
_ 1 1
by lMo—=——"7——[1+¢ r
- Mo st g =5
1 _
= [o—=———=T. B
RE g oy (B69)



Recalling Eq.(B7)-(B8) for the projection operators P, and Ps,, we can write

Py=Py+ Py =Y |[MB>< MB|, (B70)
MB

where M B = yN, 7N, nN,7A, pN,cN include all meson-baryon states in the considered
model space. Defining

Tvpas(E) = < MB|Py TPy M'B' > (B71)
VMB,M’B’(E) = <MB|VE|M,B/>,
and
1
E) =< MB MB B
Gup(E) = < |E—H0—E| >, (B73)

using the simplifications Eqgs.(B64)-(B69), Eq.(B22) for Vg, and Eq.(B48) for tg, the matrix
element of Eq.(B53) between two M B states then become

Trpare (BE) = tup s (B) + g (), (B74)
where
tusmp (E) = Vs (E) + M;B” Vg (B)G ympr (B)tampr v (E), (BT5)
with
Vg g (E) =< MBlvgy + (ugs + T'12)Go(usa + I'ay) — X|M'B" > . (B76)

As defined in the beginning of this appendix, we have vyy = vy g v g +Vrn, I'ia = Uneip +
hars —pe with M* = p, o, T'y; = FIQ and Us3 = UpfB arN, Usz = ugg. Eq.([BZ0) can be written
explicitly as

Vus s (E) = vupmp + Zup s (E). (B77)

Here Zyp e (E) contains the effects due to the coupling with 77N states. It has the
following form

Pﬂ'ﬂ'N

Z //E :<MB F
ma.e (E) 7 ——

F'IM'B >

_[5MB,M/B’ZMB(E)] ) (B78)
where
Swp(E) = < MB|S|MB >, (B79)
F = gv + UMB,rnN
= I:FA*?T('N + hp~>7r7r + h’a~>7r7r] + UMB,mnN <B80>
{)7r7rN = VUnNaN + Unr + UrnN,rnN - (BS]-)
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The resonant term in Eq.(B74) is

_ 1 _

= Z FMBHN* < N}

N} ,N*
J

Note that ¥ in Eqgs.(B73) and (B79) is defined by Eq.(B19). If we neglect the non-resonant
interactions in 77N ()-space, we then have

X = [PmE — HOF21]un—connected- (B83)

Since 'y does not have a N — wN, we obviously have < 7N|X|7N >= 0 and hence
Gen(E) = 5 K, (k) i K (p) + i€’ (B84)
6es(B) = R ) ST (B

1
) = R~ K)o (B Knlp) (e
o) = TG S E— TG (e
where

Za®) = < PALaemy S ! el > (BSS)
S (@) = < NIy o= ! R (S (B8Y)
Zoww) = < OV o ! il > (BOO)

In the above equations, K, (p) = y/m2 + p? is the free energy operator defined by momentum
operator p.

When N* — 7N is neglected, the two-pion production operator Typ defined in
Eq.(B62) also becomes simpler, since its last term in the right-hand side does not contribute.
By using Egs.(B66), (B72) and (B77), the matrix element of Eq.(B62) Tr-nnmp(E) =<
1 N|Tgp,|MB > can be written as

Teanmp(E) = < wi;zv|u32|MB >

/

Py
+ Z < ¢WWNU32—|M/B, > Thp B
Pt E—Hy—X

Py,
+ <N Ty

m‘M/BI > Ty MB] (Bgl)

Recalling that ugs = Vranmp, 21 = Tavoa + Danep + Drrs, we can write Eq.(B)
explicitly as

Tennmp(E) = Tﬁ}v,MB(E) + TfﬁN,MB(E) + T7r7rN wB(E) + T;%,MB(E) (B92)
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with

Tgfrzv,MB(E) =< w7(r7_T3V<E)‘ Z VrenN g |M'B' > [00 5 mB

+GM/B/(E)7]Z;£;’,MB(E) : (B93)
Tr wp(E) = < VN (E)Tan—almA > Gra(E)Teans(E), (B94)
TN i (E) = < SN (E) hereplpN > Gon (B)Tpnnin(E) (B95)
T2 0i5(B) = < VSN (B hanoloN > Gon (E)Tonas(E). (B96)

APPENDIX C: MATRIX ELEMENTS OF MESON-BARYON POTENTIALS

To solve Eq.(BH) for generating the non-resonant amplitudes, we need to first calculate the
partial-wave matrix elements of meson-baryon non-resonant interactions vy, B,M'B' generated
from the Lagrangians specified in Appendix A, and the one-particle-exchange interaction
Z](\f]é’ v (E) defined by Eq.[B) and illustrated in Figll In this appendix, we present
formula for calculating the partial-wave matrix elements of vy pyrp with MB, M'B" =
7N,nN,oN,pN,mA. The partial-wave matrix elements of Zz(\4EJ)B,M/B/<E) will be given in
Appendix D.

In general, each of the constructed vy p pvp consists of various combinations of tree-
diagram mechanisms illustrated in Figll. They can be computed by the usual Feynman
rules, except that the time components of the propagators of the intermediate states are
specified by the unitarity transformation method, such that the resulting matrix elements
are independent of the collision energy F of Eq.(BH) and free of any singularity on the real
momentum axis. We will explain this feature of our model at the end of this appendix.

It is convenient to get the partial matrix elements by first evaluating the matrix elements
of varp e in helicity representation and then transforming them into the usual |(LS)JT >
representation with J, T', L, and S denoting the total angular momentum, isospin, orbital
angular momentum, and spin quantum numbers, respectively. For each meson-baryon (M B)
state, we use k(p) to denote the momentum of M (B). In the center of mass frame, we thus

have = —k. Following the Jacob-Wick formulation[83], the partial-wave matrix elements
of the non-resonant interaction vy;p ap can be written as

2L+ 1)(2L + 1
vi]%’M/B/,LSMB<k/7 kE) = > \/( 2{]:E 1 )
NN A s
X < jadpNy — Ng | 8'SL >< L'S'0S. | IS, >
X < KNy = Ng | vomepoms | kA — g >],  (Cl)

where jpr and jp are the spins of the meson and baryon, respectively, and Ay, and Ag are
their helicities, and

< J, k‘/)\/]\/[ — )\IB | UM'B',MB | J, k’)\M — )\B >
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Channels|m#N nN oN pN mA
TN 1 2 4 7 11

nN 3 5 8 12
oN 6 9 13
pN 10 14
TA 15

TABLE III: Labels for v,y with a,b = 7N, nN, oN, pN, and 7A

+1
= 27?/_1 d(cos@)dihf/\b/\Mf)\B(@)

x < (K, shyNo), (=K, S, =Ng) | varaas | (K, sudar), (—F, sp, —Ag) >

(C2)
Here we have chosen the coordinates such that
K = (K'sin0,0,k cosb), (C3)
k= (0,0,k), (C4)
and the helicity eigenstates are defined by
k- Su | MK, sadar) > = A | M(E, sad) > (C5)
[—k - 5] | B(=Fk,spAg) > = Ag | B(—k, sphp) > . (C6)

Note the — sign in Eq.(C8al).
To evaluate the matrix elements in the right hand side of Eq.(C2)) with the normalization
defined by Eq.(HS]), we define (suppress the helicity and isospin indices)

<K@G),p | varp up | k(@) p> = \f
27T EB/ /2EM’ k:/ EB /2EM

XUB/< uB ]7) )

where n defined the M B — M'B’ transitions as specified in Table [l and 4, j are the isospin
indices of the mesons. We also have defined ¢ = k' — k or ¢ = p — p’. The expressions of
each term in Table [Tl are given in the following subsections.

1. w(k,i)+ N(p) — n(k,j) + N

VI=V+Vi+Vvigviqevt C8
a b c d e

o1



with

V= ) it k) e (©9)
V= [f:nﬂ]Q s Sn(p — k') ¥yt (C10)
VE = (g )i - KR (c1)
) ! 1
le = igpNngﬂW%Ejilm
<[ ) + A K d= (e 1O (C12)
N
> onT k- K
V= _goNNgmﬂ i j 72— m? (C13)
2. 7(k,i) + N(p) — n(k') + N(p)
V(2) =V + V] (C14)
with
VQ o waanNN ! i
« T Toam, KvsSn(p+ k) fysT (C15)
Vg = I i o k) (16)
3. n(k)+ N(p) — n(k') + N(@')
V) =Vit+ 1P (C17)
with
78 = (IR psp+ k) Ko (c18)
my
V= [m]z KvsSn(p — k') s (C19)
my
4. w(k,i)+ N(p) — o(k') + N(p')
V(4) =V + Vi + V] (C20)
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with

with

with

with

V4 ,fﬂNNgcﬂrﬂ q i -k
c = m2 5T 2
™ ™

V() =V + VP

Va5 = igoNN f:T]:N SN(p + k) %75

Vy = igaNNf:T]:N FvsSn(p — k)

V(6) = V' + 1

‘:/f = gonnSn(p + k)
Vb6 ggNNSNQ? - kl)

m(k,i) + N(p) — p(K',j) + N(p')

V() =VI+V +VI+V i+ V]

.f7rNN

= 9oLy Sn(p + k) KrysT’

Z'f;rnﬂgpNN Kvst'Sn(p — k)T

fann l(q - k) : EZ' 1s

Gprr€ijl
My > —m?2

f7rNN l
———9gpNN ﬁ’;/%%ﬂ'
mﬂ'

*Qu /ﬁkn,
ngNgwﬂpaueaﬁ’Yéep’ k K o 4 é
L R (Y d= a°)]

23

(C21)
(C22)

(C23)

(C24)

(C25)

(C26)

(C27)

(C28)
(C29)

(C30)

(C31)
(C32)
(C33)
(C34)

(C35)



where

(7 K=K )] (C36)

V)=V, + V) (C37)
with
_ f
V=i :T]:nngNNFp’SN(p+ k) Kvs (C38)
vy = if:r]:ngNN KvsSn(p — KTy (C39)
n
9. o(k)+N(p) — p(K',j) + N
V() =V +V) (C40)
with
Vag = gonNYgonNT ySn(p + k) (C41)
V' = gpnngonnSn(p — KTy (C42)

10. p(k,i) + N(p) — p'(K,5) + N(p))

V(10) =V,  + V0 + V1 (C43)
with
VO+ 10 = g/Q)NN Lo Sn(p+ E)Ly + TpSn(p — K)L,] (C44)
where
T K
Fp = 5[% - 4T;N<¢p %_ % %p)] (C45>
10 .ﬁpgimv !
V; = Zm[ﬁp ﬁ;;— f;/ ﬁ/p]eijﬂ' (046)
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11.

with

12.

13.

with

m(k,i) + N(p) — «'(K',j) + A(p')
V(ll):‘_/all+‘7;)11+‘7cll+‘_/dll+‘7ell

Vi MT&Z K'Sn(p+ k) kst

Vi = Jenw fena T'ex - kSn(p — k') K57’

2

— . ar €4 Tl * *
i = lenals P len (ke Ky — eh - (k- K) s

my, q p
pi = _LA;J;”NA [€Aly KsTASR (0 + k) Tk
11 fwAAanA * T QU NI L
VI = RTINS () s TASK (o — K)TR,

V(12) = %T%z K Sn(p+ k) Krs
i

o(k) + N(p) = «'(K,5) + AP')

TJE*A . k/SN(p —+ k)

‘7<14) — Va14 4 ‘7bl4 4 ‘7614 4 Vd14

U = I s s,

_ JENAGONN it *
%14 = ZTPT [EA -k Q/p’)% — €A " €p %75]

XSN(P - k’,) %,VSTj

25

(CA7)

(C48)
(C49)
(C50)
(C51)

(C52)

(C53)

(C54)

(C55)

(C56)

(C57)



Vi = M[ Mo KsTASY (0 + K ks g5 — le,ls Krs)T" (C58)

mym,
= g f7T * K 7 QO / j
Vit = =i R ld, - 3 2 (4 B K gITASE (0 — K) TR
(C59)
15. (ki) + A(p) — 7' (K, j) + A'(p')
V(15) = V15 4 U5 4 715 4 4 (C60)
with
VI = [f;i“]Q XK TISN(p+ k)ea - k(T (C61)
15 anA 2 J uv i
U = 221 T ene Y (0 + Beal. 5T (62)
715 __ anA v / / J
Ve? = [T =1 KrsTalear]wSA"(p = )leals ¥sTA (C63)
- aTh K ,
Vi® = igpangorn 05 (4 K+ J2 2 (K K = dU K ear - s
p
(C64)
The baryon propagators in Egs.(C8)-(C64) are
1
Sn(p) = pa— (C65)
v 1 prpy Y =t pr =t
W) = ——[2(—g" - .
S 0) = g2+ )+ T I (oo

Eq.(CE0) is the simplest choice of many possible definitions of the A propagator. It is part
of our phenomenology for this rather complex coupled-channel calculations.

Although the expressions Eqs.(C8)-(C64) look like the usual Feynman amplitudes, the
unitary transformation method defines definite procedures in evaluating the time component
of each propagator. For each propagator, the vertex interactions associated with its ends
define either a ”virtual” process or a "real” process. The real process is the process that can
occur in free space such as A — wN. The virtual processes, such as the 7N — N, 1A — A,
and 7TA — N transitions, are not allowed by the energy-momentum conservation. The
consequences of the unitary transformation is the following. When both vertex interactions
are 'virtual’, the propagator is the average of the propagators calculated with two different
momenta specified by the initial and final external momenta. For example, the propagator
of V, of Eq. (C9), which corresponds to 7(k)N(p) — N — 7(k')N(p'), should be evaluated
by

Sn(p+ k) — %[SN(p + k) + Sn(p + k)]
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=3

3! (En(p) + Ex(k)? = (F+ k)> — miy
_l’_

(Ex(¥) + Ex(K)" =5 - (¢ + ) + muy
(Ex(p) + Ex(k))? = (¢ + K')? = m}

One see clearly that the denominators of the above expression are independent of the collision
energy F of scattering equation Eq. (B3) and finite in all real momentum region. This is the
essence of the unitary transformation method in deriving the interactions from Lagrangians.
When only one of the vertex interactions is 'real’, the propagator is evaluated by using
the momenta associated with the ’virtual’ vertex. For example, the propagator of V!
Eq.(C51), which corresponds to 7(k)N(p) — A — w(K)A(p') is SK”(p + k'), not SK” (p+ k)
or [SR”(p'+kK)+SK (p+k)]/2. The structure of its denominator is similar to that of Eq.(C67)
and hence the resulting matrix elements are also independent of scattering energy E and
finite in all momentum region. The terms which have one ’real’ and one ’virtual’ vertex
interactions are V2, V.7, V11, Their corresponding intermediate momentum variables have
been correctly specified. The average, such as that of Eq.(C67), must be used in all other
terms of Eqgs.(C8)-(C64). We note that there is no propagator in Eqs.(C8)-(C64) which is
attached by two real processes such as TN — A — wN. Such real processes are generated
from Ty of the Hamiltonian and included in the resonant term ¢35 1 p of Eq.(I).

_ L (En(p) + Ex(k))"" =7 - (P'+ k) +my
(P

I, (C67)

APPENDIX D: MATRIX ELEMENTS OF VERTEX INTERACTIONS

We need to have partial-wave matrix elements of vertex interactions I'a_.rn, hp—rr, and
hy—=r to evaluate the self-energy ¥, with a = 7A pN oN of Egs.(B9)-{T), and the one-
particle-exchange interactions Z ( A)ﬂ A Zéﬁ A, and z\5 Nﬂ A, Hlustrated in Fig§

In consistent with the normalizations defined by Eqs [#Y), we write the matrix element
of the a(p,) — B(ps) + v(p,) vertex interaction f, g, as

< Pas oo | fag |0 ol o G550y, >= 6(Pa — P/)
X Z < jamia”asamlams(x >< SaMs, |jﬁjvmj5mj~/ > frna (q;)}/lamla (4.) (D1)

allm’s

where j, is the spin of the particle a, [, is the relative orbital angular momentum of the
pair (3,7), na = [(la(JsJy)Sa)]ja) denotes collectively all quantum numbers specifying the
interacting (3, ) pair, The momenta are related by relativistic kinematics

Vo =0st0,, (D2)
0o = Vgt pally. s %)V (D3)
05 = —Vo— sl s )P 5 (D4)

where x = pzx . p76, and

poz(pompﬁv :L‘) = gp_al/Q |:€pﬁ +ﬁo¢ : ﬁﬁ(epﬁ + EPat+is + 51/2) }
pﬁ(pompﬁax) = pa(pﬁaponx)a
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The form factor g,,(q),) for p — 7w and ¢ — 77 are taken from Ref.[68] and A — 7N are
from SL model. They are related to phase shifts by

s (E 0o B) = ‘fna(qo)‘Q D
_[Sln a’( )]6 ( )_E—MO—Z(E) ( 5)
with
| fra (@)
Yol / q"dq - : D6
B~ Byla) - B(0) + ¢ (0o
Explicitly we have
f7rNA + mN 47T 2
- = _ D7
fam(a) mx (27)%% \ 2E, (q) QEN g AwNA o7
with fryva = 2.049, Arna = 3.29 (fm)~1 and MY = 1299.07 MeV,
qr
fp,m(Q) = gp,mm (D8)
with g,zr = 0.6684 mY/? r =0.428 fm, and M_ = 811.7 MeV,
1
go,7r7r<q) = gUJrWW (Dg)

with gy rr = 0.755Om71/2, r = 0.522 fm, and M? = 896.8 MeV.

APPENDIX E: MATRIX ELEMENTS OF z\%) . (E)

With the matrix elements of the vertex interactions defined by Eqs.(D1)-(D4) of Appendix
D, we can evaluate the partial-wave matrix elements of one-particle-exchange interaction
Z](\fg’ w - We use the cyclic notation (a, 3, ) to specify the particles involved in the vertex
interaction @« — [ + 7. By using the angular momentum quantum numbers defined in
Appendix D, we then define the basis state of a M B system with a given total angular

momentum (JM) in the center of mass frame as

|Na; Dad M >= {Lo[(la(j8Jy)Sa)Jadal Sa} T M pa >, (E1)

where we have introduced a concise notation N, = [{La[(la(75J+)Sa)Jada)Sa}]-
Following the standard procedures of Ref.[69], one then obtained

2Ry 80 (P33 Da) = < Nﬁ?pﬁJM|G7r7rN(E)|Na§paJM >

= 51> Z Z ELb (pg, pa; E)AN N, (Pa/ps) ™", (E2)

L a=0b=0
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where 0,5 = 1 — 045, and
AL = ()i EaLsSaSs)a) sasel’

¢ Ll DIl ! s
(2a)!(20)!(21, — 2a)!(205 — 20)!

S, S j
AN SQS ']a*. @ BT ﬁ
X Z[fAA’]Q{L o §} Jo s Uy
FAN g Ha Sa lo lg Sg
la lg  f
X {5\?6\6{,} a lg—b A
l,—a b N
AN L Lg AL L, l,—a b N alg—>b A
X(ooo)(oo 0)(0 00)(0 0 0) (E3)
with a = v2a + 1 and
R=—J+L+Lo+Ls+Sa+S85+ja+is+ss+1ls—Ju. (E4)

In the above equations, the usual 3-j, 6-j, 9-j, and 12-j symboles have been used to define
the angular momentum coupling. The details can be found in Ref.[69)].
The three-body cut effects are in F¥ | (pg, pa; E) of Eq.(E2). They are calculated from

77/5 Na
the vertex functions f,_(¢.) by

(E5)

*B b —la ja e (Qa P
FnLani@Bapm 2/+1d ( )f (qﬁ)qa a(x)f (q) L(x)

Pa) = Ep(=Dp) — Ey(Pa + Ps) + i€

where x = p, - pp and the vertex function f,,, defines o — '+ and f,,, defines vy +a’ — 3.
Namely, o/ and 3 are the spectators of the decay of particle a and 3 respectively. We
obviously have « = A, o/ =7, v = N, = A and ' = 7 for Z A)WA(E), and o = p,0
o =N,y=m, =Aand ' =7 for Z(N)WA(E)

In the actual calculations,; the integration path —1 < z < 1 of eq.(E5) is deformed into the
complex z—plane in order to avoid the singularity zy (—1 < xy < 1) where the denominator
vanishes. We have used a simple parabolic form, i.e., z =t +i(t* — 1).

APPENDIX F: MATRIX ELEMENTS OF YN — M B TRANSITIONS

To include the final meson-baryon interactions in the photo-production, it is only neces-
sary to perform the partial-wave decomposition of the final M B state. We thus introduce
the following helicity-LSJ mixed-representation

2’ +1)
virsnr g aon (K@) = Y0 % < i Ny (=Ng) | §'S. >
Ny N
x < L'S'0S. | JS. >
< KNy (=Ng) [ varsran | T g (= Aw) >, (F1)
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where < J, K’y (=Ng) | varpr v | J,gA(—=An) > can be evaluated using the same expres-
sion of Eq.(C2) using the heliclity matrix elements of vy 5 ,n. To evaluate these quantities
with the normalization defined by Eq.([H8]), we define for a photon four momentum ¢ = (w, §)

1
< (K'9),p > = — < (K9),p|) J* >
( j)ap‘UMB,’yN‘q7p \/% ( .7)7p|zn: (n)€ﬂ|Q7p

1 mp 1 _ " my 1
= @ 2\ B\ 2B, o) e e O B Vo
(F2)

where ¢, is the photon polarization vector, and n denotes a given considered process

I(n)=c¢-j(n). (F3)

Here j(n) can be constructed by using the Feynman rules. The resulting expressions for
each of YN — 7N, nN,oN, pN, A are listed below :

1. (@) + N(p) = =(K,5) + N(@)

I =+ I I+ IR+ T+ 1 1) (F4)
with
.f7rNN j 1
_[1 — ! ]—P F5
L =1 m. K ysT I F —mn (F5)
N KN
where I'y =éy ¢, — 4—[% d— d ¢ (F6)
my
.f7rNN 1 j
[1 — F / J F7
b me N]é—%'—mN KoysT ( )
I = if“NArim’ATSZ“(p— KK, T (F8)
I = —fﬂNNEi AT (F9)
Moy J Y
N _Mﬂﬁjﬂi(;ﬂk/).ev (F10)

My k/'2 — mx

goNNYGpor Tj K o
G:—ig%ij¢+—LW%—Mm

4mN

. 1
X €apnskq egkz__7n2 (F11)
P
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gw gwr K
I} = R0y B (40 g )

My dmy
- 1
xeagnak"q%g(sjzsf e (F12)
where FZ”“A = T;T’AEZ-
2. 7(q) + N(p) = n(K) + N(p)
I2) =12+ I} + I? (F13)
with
JaNN 1
72 — dn / I F14
o mn %’)/5%/4_%/_””\[ N ( )
NN 1
[2 = 4 n T / F15
b m, Nﬁ—%’—mN ks (F15)
3
9oNNYGpiy T K 7.
72 — _9eNNGomy T P (Y W= R
; o S0 g (0 K= )]
= 1
X €wapk!q ef R (F16)

p

3. v(¢)+N(p) —aK)+N(©)

3)=1+1 (F17)
with
P —gon——— Ty (F18)
a g %/_'_%/_mN
1
I = —gyn[IN————— F19
b goNN Nﬁ—%'—mN ( )

4. *y(q) + N(p) - P(k/7j, )‘) + N(p/)

@)=+ B v v iy 1 (F20)
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with

1
74— _ . r F21
a 9pNN (YR N ( )
1
I = —gpNNFNme/ (F22)
f A * | o em
I = A, g Hey TV S + KT (F23)
p
f em v j *
If = IS - )T, g K (724
p
.gpNNRK
[;1 = 1 p8mNp€l'j3Tl'[¢;/ ff\/— ¢'Y ﬁ,;/] (F25)
.gpNN K 77
I4 — p- P _
N U R O ol 7))
o ~ " % ’ € Ti
X[ (k+ k) ey — (k- €y)e! — (e €)™ o L (F26)
— mp
I* = = _i—f’rNN o Ay %571 (F27)
g My My V5€apnoh "€y 4q T2 m2
(F28)
5. 7(q) + N(p) — n(K,j) +A@p)
IG) =12+ 1)+ 0+ I3+ 10+ 17+ 17 (F29)
with
I? = if;i\mez K'TISN(p' + K )Tn (F30)
I = AT A sy (p - 1) Kosr (F31)
= _i_f;f%gu K AsTASK ( + k)T (F32)
5 .fﬂ'NA * 1 3 m uw] QA N1 vy
Ig =1 m €A<§ +TA)[_gn #y + (€)Y ]Suv<p_ KOE"T (F'33)
fWNA 7 *
1= ewTe (F34)
fT(NA 7
R L L\ (F35)

s
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f NA Gor ; 1 7 * 1. o B7.
Iy = - ﬁnp T;:TJ Tk A = M falscasnd ek (F36)
P

where the pion pole term [ ;’ consists of energy independent interaction Vg5 and energy
dependent interaction Z;’ given as

1 en k(b1 +E) €

5 A 1\ g 0% 0

— F
Y = B Ewla) — Ba(W) — Eulk— ) 2O (#37)
Z5 _ 1 E*A . kQ(kQ —|— k,) . 67 (F38)

9" 2E.(k—k)E — Ex(q) — Ex(K) — Ex(k — k') + ie

with k1 = (Ex(k — k'), k' — k) and ky = (—E.(k — k'), ¥’ — k). The on-shell matrix element
of V) + Z7 is given as
- 1
VA4 75 = e k(E+E)- T (F39)

_ 2
ma

APPENDIX G: MULTIPOLE AMPLITUDES OF vN — 7N

For YN — M B matrix elements, we use the helicity-L.SJ mixed-representation defined by
Eq.(®4). It can be calculated by using Eq.(F1). For pseudo-scalar meson 7 and 7 production,
it is often to write the amplitudes in terms of multipole amplitudes. Here we want to relate
our matrix element Eq.(F1) and hence also the amplitude Eq.([64]) to this commonly used
multipole amplitude.

With the definition Eq.(Tl) for the scattering amplitude T, we first define the amplitude
F' by the on-shell T-matrix element of YN — M B as

472
< MB|F|yN > = —W\/EN(k:)EM(k)|qO|EN(q) < MB|T|yN > (G1)

1
V2laol
with

T = Jte, = J° — J-¢€, (G2)

where Jte, = >, j*(n)e, is identical to that in Eq.(F2). The most general Chew-
Goldberger-Low-Nambu (CGLN) amplitudes|[17] F' can be written as (isospin index is sup-
pressed )

F = —iU‘ELFl—U‘l%o"q/\xELFQ—Z.U‘qk‘ELFg—'l.o"l%l%'engl
—io - (G- €Fy —io - k- €Fs +io - keoFy + io - GegFy . (G3)

Each coefficient in the above equation can be written in terms of multipole amplitudes Fj,
My, Lit, S+

Fy =) [PlaE + P B + 1P My + (L + 1) P M, (G4)
l

Fy = Y [+ )P My +1P/M,], (G5)
l
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Fy = [Pl Ei+ P B — Py My + P M, (G6)
l

Fy = ;[—P/’EH — P'Er- + P My — P'M;], (G7)

b5 = ;w + )P Loy — 1P L], (G8)

Fo = > [-(+1)P Ly +1P/L], (G9)
l

Fro= Y [-(+1)PSy +1P/S], (G10)
l

Fy =) [(I+1)P S — 1P 15-], (G11)

l

where Pp,(x) is Legendre function and = = k- . It is of course well known that only four of
the above amplitudes are independent for photo-production and six for electro-production.
Choosing the photon direction as ¢ = 2, Egs.(F2) and Eqs.(G1)-(G2) clearly lead to

472 1
< J|F[Ays > = _—\/EN<k>wM<k)|qo|EN<q>7vigﬂN,)ws<kaq)\/QqO- (G12)
W /2] qo]

|CJ0

Here s is the z-component of the initial nucleon spin and we have dropped the notation
MB = 7N and (LS) = (I = J +1/2,1/2) and isospin T in defining the matrix element of
F.

With the form Eq.(G3), it is easy to calculate the matrix element < J|F|\,s > in our
helicity-LSJ mixed-representation. After some derivations, we obtain the following relations

B =gl <J=1+12[F]A=15=-1/2>
l
_ _ = 1/2|FIA=1.s=1/2 1
g <J =l AFN =15 =1/2>] (G13)
E_. == —-<J=1-12|FA=1,s=-1/2>

[1+1
— §+—1 <J=1-1/2|F]A=1,5=1/2>] (G14)

My =gl <J=1+1/2[F]A=1,5=-1/2>
I +2
< =1+1/2F]A=15=1/2>] (G15)
M- == <J=1-1/2|F]A=1,s=-1/2>
I—1
_ — =[{—1/2|FIAN=1.s8=1/2 1
<=l AFR =15 =1/2 5] (G16)
Ly = =55 <J=1+1/2[F]\=0,s=1/2> (G17)
L. =2 <J=1-1/2]F\=0,s=1/2> (G18)
Sy =iy <J=l+12[FA=ts=1/2> (G19)
S =-2 < J=1-12|FA=ts=1/2> (G20)
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Here we used polarization vector e*(\ = t) = (1,0). Substituting Eq.(G12) into Eqs.(G13)-
(20), we can relate the usual multipole amplitudes of YN — 7N to the matrix element
Eq.(F1) in the helicity-LSJ mixed-representation.

APPENDIX H: YN — maN AMPLITUDES

We consider the non-resonant (q)N(p) — w(k")m(k?)N(p') illustrated in Fighl With
the normalization defined by Eq.(3]), we define the matrix element of this amplitude with
a photon momentum ¢* = (w, §) as

< k](j)ak (l)ap, | 'U7r7rN,'yN |p >= \/T—w < k](])ak (Z)ap/ | J | p > 'E’Y(q)a (H]')

where ¢ and j denote the isospin components of the produced 77, €, is the photon polariza-
tion vector, and

<k‘j()]€2()p|‘]u|p>_ 9/2\/;\/4E k:z k;] EN()
~ (k)" un(k

XU

(H2)
with
g = g1+ 5*(2) + 34 (3) + 5 (4) + j*(5) + j*(6) (H3)

Each term of Eq.(H3) are from mechanisms illustrated in Figll Within our formulation,
the non-resonant mechanisms are only from diagrams with intermediate nucleon states. The
exchange mesons can be 7, p and w. We then have the following expressions

J"(1) = i[fﬂNN]Q[%i%TiSN(p/ + kDY ysenisTt + Y vsersm Sn(p — k) FisT'],  (H4)

s

712) = LB iS4 k) P Sulif + K+ )T

+ %i%TiSN(p'A + kZ)J]‘\‘,SN(p — k) %j'fyg,rj. |

+INON(p — k' = K) Kysm' Sn(p — k) Fs77], (H5)
iy TN Y ' i ‘ (p—p — k' + k)"
J*(3) = —il . P S (0 + k) (B— ¥ = F)vsengs” T

i =P kAR
(]5 ﬁ % )75619]37_ SN(p k ) % (p p k’l)Q _ m2 ) (H6)

Py = I i f 1 )T+ e )

P D0+ 2 (00 - )l - K) Krer'll _lm% , (17)
3*(5) = [fWNNg:,LJZNgW][% ¥ SN (P + k)’ 4mN “—(+° f= )]

+ + 4:1—“’N(7‘5 k= Fr")Sn(p — k') Krs']]
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Xeagngknq(XEg(sjg.m ) (H8>
_ 7053+ 778; 3 — 2730, K -
6) = — o — - e G o (H9
In the above equations, we have defined
1 3 < 3
Hy = g i T g, (H10)
2 2my
and
k=p—p — k. (H11)

APPENDIX I: RESONANT AMPLITUDES

In this appendix, we give formula for using the N* parameters listed[62] by Particle Data
Group to calculate the resonant amplitudes defined by Eq.(68).

In the rest frame of N*, the amplitudes of strong decays of a N* with a mass M”77 and
spin-iospin (J7T') can be written as the following partial-wave form

< ¢JmJ7TmT | Iyemb | kaijth’ijmtB >

=Y > [< Tmrltutpme,my, >< Jmy|LSmpmg >< SMs|jmjsm;,,m;, >
LS allm;

/ /87‘(‘2 k .
3/2\/7 EB mpkn G k kR)(/{JR) YLmL(k)]7 (Il)

where kg is defined by M7?T = Eg(kg) + Ey(kg) and the form factor is chosen such that
fi{L(kr, kr) = 1. With the normalizations

< (meJ,TmT‘(meJ,TmT >= 17
< K|k >=6(k — k), (12)

the partial decay widths can be written as

dlyp(N%p) = (2m)6(M?T — Eg(k) — Ex(k)) dk

2J +1
[Z Z |< ¢JmJ,TmT | Iy~ mB | k7mjlwmt1VI7ijmtB > |2] (13)

myj ij 7ij

From Eqs.([l) and ([3)), we then have

Typ(Nip) = Z |GTE|? . (14)

Eq.([[@) allows us to determine the coupling constant G7% up to its phase in terms of the
empirical partial decay widths as listed by Particle Data Group[62]. Here we use the phase
from the ® Py model of Capstick and Roberts[79].
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For N* — vN amplitudes, we use the commonly used helicity representation to define

* 1 —
AN (Njp) = 2m)6(M7" — En(q) — Q)QJ n Tdd
D> 1< bamyrme | Dneeonis | @ Ay, Avs muy, > |7 (I5)

my )\7)\1\]

With the normalizations defined by Eq.([2)), we then define

< ¢JmJ,TMT |1—‘N*—>'\/N|(_T; )\'yANth >
1 my 1

- 5mT7th 5)"()‘7_)\1\[) (27T)3/2 EN(Q) m

[ ZkRAiT]g)\JT(Q7qR)dimJ(e)ei(A_mJ)(b7 (16)

where g77(q, qr) is a form factor with gg defined by M’? = qp + En(qg) and normalized
JT _ o : : JT| _ AJT

as g3 (qr, qr) = 1. Substituting Eq.([d) into Eq.([H) and noting that |A”}| = A", we then

obtain the standard form

:ﬁmN 8
A4 MIT2J + 1

Lyn(Njr) 14350 + A7) (I7)

We only include 3 and 4 stars N* in our calculations of Eq(G6]). We use their mean values

of G{% and A,, as listed in Tables [VIVI
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TABLE IV: The helicity amplitude Ay is given in unit of 1073 GeV~2. G g is in unit of MeV/2.
The resonance mass M é and the total decay width I'*! are in unit of MeV.

N3 (Mg) T™  channels L,S Grs Ay Asp
S11(1535) 150 YN - - 0.090 0.0
N 0,1/2 626 - -
oN _ 0,1/2 755 - -
A 2,3/2 1.06 - -
pN  0,1/2 149 - -
oN  1,1/2 150 - -

S11(1650) 150 YN - - 0.063 0.0
N 0,1/2 1223 - -
nN  0,1/2 348 - -
A 2,3/2 201 - -
pN  0,1/2 142 - -

2,1/2 5124 - -
oN 1,1/2 142 - -

Py1(1440) 350 YN - - -0.065 0.0
N 1,1/2 18.78 - -
A 1,3/2 885 - -
oN 0,1/2 766 - -

Py1(1710) 100 YN - - 0.009 0.0
N 1,1/2 622 - -
nN  1,1/2 293 - -
A 1,3/2 747 - -
pN  1,1/2 493 - -
oN 0,1/2 119 - -

P13(1720) 150 YN 0.018 -0.019

TN 1,12 245 - -
nN  1,1/2 220 - -
pN  1,1/2 1049 - -
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TABLE V: The helicity amplitude A is given in unit of 1073 GeV~/2. Gpg is in unit of MeV1/2.
The resonance mass M é and the total decay width I'*! are in unit of MeV.

N3, (Mg) T channels L,S Grs Ay Asp

D13(1520) 120 AN - - -0.024 0.166
TN 2,1/2 881 - -

A 0,3/2 431 - -

2,3/2 3.69 - -

pN  0,3/2 334 - -

oN 1,1/2 111 - -

Dy3(1700) 100 YN - - -0.018 -0.002
N 2,1/2 265 - -

A 0,3/2 4.38 - -

2,3/2 11.758 - -

pN  0,3/2 35 - -

Dy5(1675) 150 YN - - 0.019 0.015
N 2,1/2 6.77 - -
A 2,3/2 9.085 - -
pN  2,3/2 1.46 - -

Fi5(1700) 130 N - - -0.015 0.133
TN 3,1/2 939 - -
A 1,3/2 423 - -

3,3/2 113 - -
pN  1,3/2 252 - -
3,3/2 195 - -

oN  2,1/2 339 - -

G17(2190) 450 YN - - -0.055 0.081
N 4,1/2 9.52 - -
pN  2,3/2 1146 - -
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TABLE VI: The helicity amplitude Ay is given in unit of 1073 GeV~2. G g is in unit of MeV/2.
The resonance mass M é and the total decay width I'*! are in unit of MeV.

N3, (Mpg) Tt channels L,S Grs Ay Az
S31(1620) 150 YN - - 0.027 -
N 0,1/2 8.02 - -

A 2,3/2 747 - -

pN 0,1/2 457 - -

2,3/2  1.69 - -

P31(1910) 150 YN - - 0003 @ -
N 1,1/2 1438 - -

1,1/2 11.5 - -

P53(1600) 350 YN - - -0.023 -0.009
N 1,1/2 11.75 - -

A 1,3/2 17.06 - -

P33(1920) 200 YN - - 0.04 0.023
N 1,1/2  2.48 - -

A 1,3/2  7.10 - -

D33(1700) 300 YN - - 0.104 0.085
N 2,1/2 244 - -

A 0,3/2 10.35 - -

2,3/2 2.18 - -

pN 0,3/2 1.09 - -

F35(1905) 350 YN - - 0.026 -0.045
N 3,1/2  6.11 - -

A 1,3/2  9.78 - -

3,3/2 1353 - -

pN 1,3/2  9.99 - -

F35(1950) 300 YN - - -0.076 -0.097
N 3,1/2 10.38 - -

A 3,3/2  9.39 - -
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