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The multifractal structure of flow distribution is investigated in the river-network model of
Scheidegger [Bull. IASH 12, 15 (1967)]. It is shown that the partition function Z(q)=3 I/ scales as
Z(q)=L*“? where I, is the flow of water passing over the bond i within the river network, the summa-
tion ranges over all bonds, and L is the size of the river network. In the limit of a sufficiently large g,
£(q)/q gives the exponent of the drainage basin of a river. The exponent also equals to the fractal di-
mension d, of a single river. The f —a spectrum of the normalized flow distribution is calculated. It is
found that the fractal dimension d, of a river is exactly given by d;=2—a( ). The flow distribution
shows a characteristic multifractal structure for the river network. The river-width distribution also
shows the multifractality if the width w of a river scales as w =~ I,

PACS number(s): 05.90.+m, 92.40.Fb, 68.70.+w

Recently, there has been increasing interest in fractal
structures of growth processes such as diffusion-limited
aggregation (DLA), ballistic deposition, and river net-
work. The DLA model presents a prototype of the pat-
tern formation of diffusive systems including electrodepo-
sition, crystal growth, viscous fingering, and bacterial
colonies [1-9]. The ballistic-deposition model provides a
basis for understanding deposition processes used to
prepare a wide variety of thin-film devices [9]. Branched
river networks are among nature’s most common pat-
terns, spontaneously producing fractal structure [10-13].
Rivers have been studied extensively by a wide variety of
researchers with a variety of techniques and goals.
Geomorphologists have found scaling relationships
among various combinations of basin statistics from field
data, such as drainage density and branching ratios. Hy-
drologists have likewise extracted power laws for channel
parameters such as width, depth, and velocity as func-
tions of total channel discharge. Some investigators have
constructed models for the evolution of an entire
drainage network [12-14]. The Scheidegger’s model is
the simplest model that reveals the essential features of
river formation. It has been known that the river pattern
of Scheidegger’s model shows the fractal structure with
the fractal dimension 1.5 and the size distribution of
rivers also satisfies the power law [11]. However, the flow
distribution in the river network has not been studied in
the Scheidegger river-network model. There is an open
question as to whether or not the flow distribution in the
river network shows the multifractal structure.

Multifractal properties of the DLA and the random
resistor network have recently attracted considerable at-
tention [7,9,15]. It has become clear that the DLA aggre-
gate cannot be fully characterized by its fractal dimen-
sionality. In order to characterize the aggregate, further-
more, it is necessary to derive the multifractal structure
of the growth probability distribution. From the mul-
tifractality, one can obtain detailed information on the
capability of each perimeter site to grow and therefore,
more information on the surface structure [16—-20]. Also,

47

de Arcangelis, Redner, and Coniglio [21] have found that
the current distribution on the percolation cluster shows
the multifractal structure. It has been shown that electri-
cal properties of self-similar resistor networks should be
characterized by an infinite set of exponents.

In this paper, we investigate the flow distribution of
water flowing through the river network by using the
Scheidegger-river network model. We address the open
question as to whether or not the flow distribution shows
the multifractal structure. Also, we discuss the mul-
tifractal structure of river-width distribution.

First, we introduce the river-network model of
Scheidegger. Rains are assumed to be falling stationary
and uniformly on the sites of the oblique square lattice.
One unit of water is injected into each site per unit time.
Then, fallen raindrops walk down the slope. When two
raindrops collide with each other, they join and make one
drop, which runs down just like before the collision. Any
flow is prohibited to split. Flows are allowed to go right
down or left down only with preferred direction (down-
stream). Figure 1 shows a simulation result of the
Scheidegger river-network model. The rivers do not con-
tain any loop. All branches are directed to the upstream.
One of the most important quantities in this system is the
distribution of flow rates on the river network. The rate
of flow on the river network is proportional to the area of
its drainage basin. The flow rate I; on the bond i is
defined as the amount of flowing water through the bond
i per unit time. Each bond of the river network can be
characterized by the flow rate of water flowing through
it. If the bond (or site) is labeled by the position (m,n),
where m indicates the downstream direction, the flow
rate satisfies the equation

Ilm+1,n)=wim,n)I(m,n)
+[1l—wm,n+1)|I(mn+1)+1, (1)

where w (m,n) denotes the realization of the water at the
site (m,n) which is equal to 1 when the flow at the site
(m,n) goes right down and O when the flow goes left
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FIG. 1. Typical river-network pattern generated by the
Scheidegger river-network model. This run was done on a
20X 40 square lattice under a periodic lateral boundary condi-
tion for an illustration. The width of lines is proportional to the
flow rate through each bond where larger flow rates than 8 are
indicated by the same width.

down, and w (m,n) is given by

1, probability
w(m,n)=

0, probability (2)
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For an illustration, Fig. 1 shows a typical river-
network pattern generated by the Scheidegger river-
network model. This run was done on a 20X 40 square
lattice under a periodic lateral boundary condition. The
flow rate on each bond is indicated by the width of the
river, where larger flow rates than 8 are represented by
the same width. The partition function Z (q) is defined as
the moments of the flow rate

Z(q=3 17, (3)

where the summation ranges over all bonds on the river
network.

We perform the computer simulation of the
Scheidegger river-network model for the square lattice
200X 300. By the use of Eq. (1), the flow rate on each
bond is calculated under a periodic lateral boundary con-
dition. We study the scaling behavior of the partition
function (3). Figure 2 shows the log-log plot of the mo-
ments against the vertical size L. It is confirmed that for
sufficiently large L the partition function scales with size
L as

Z(g)=L%? @)

Figure 3 shows the {(q) behavior against g. The positive
exponents {(q) are a characteristic property of the coales-
cence of water drops with injection of water. In the resis-

tor network of the percolation cluster, the exponents are
negative values since the current distribution is described

in terms of a fragmentation process of electric current.
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FIG. 2. Log-log plot of the moments (3) against size L show-
ing scaling behavior.

The exponent £(0) equals to 1. The exponent £(1) gives
the dimension d=2 of the river network. For a
sufficiently large g, {(q)/q gives the scaling exponent
1.50+0.02 of largest flow rate, which is consistent with
the exponent of the drainage basin. Also, it equals to the
fractal dimension d,=1.50 of a single river.

In order to characterize the multifractality of flow dis-
tribution, it is convenient to normalize the flow rate. The
normalized flow rate I/ on the bond i is given by

I)=I1,/Z(1) . (5)
We define the normalized partition function Z'(q) as

Z'(q)=Z(q)/{Z(1)}7. (6)
For a sufficiently large L, the partition function scales as

Z'(q)=L " . @)

Figure 4 shows the plot of exponent 7(q) against g. With
the Legendre transformation of 7(q), we obtain the f —«a
spectrum

flg)=qalg)—7(q), (8)

where a(q)=097(g)/dq is the variable conjugate to q. Fig-
ure 5 indicates the f —a spectrum. The flow distribution
shows a characteristic f —a spectrum for the river net-
work. The maximum value f(0) of f () is related to the
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FIG. 3. Behavior of the scaling exponent {(g) against g.



47 MULTIFRACTALITY OF FLOW DISTRIBUTION IN THE. .. 65

FIG. 4. Plot of the exponent 7(g) against q.

dimension d =2 of the river network
fO)=d—1=1. 9)

The maximum value of a gives the minimum fraction of
flow rate. The minimum value of a gives the maximum
fraction of flow rate. The minimum value a( ) is exact-
ly related to the fractal dimension d of a single river

— |97 __ |3 |Inz() InZ(1)
o) 9 |- 3 | InL q=w+ InL
=2—d,, (10)

where InZ (1)/InL =2. The minimum value a(e) ob-
tained from the simulation is given by 0.491+0.02. We
obtain the fractal dimension d;=1.51%£0.02 from Eq.
(10). This value is consistent with 1.50 obtained by the
direct simulation [11]. The properties of river networks
should be characterized by the infinite set of exponents or
the f —a spectrum.

We consider the scaling properties of the river-width
distribution. From a variety of empirical investigations
[22,23], it is found that the width w of a river scales as a
function of channel discharge I:

w=IP, 1n

where the value of the exponent 3 ranges from 0.25 to
0.50 [13]. Here the channel discharge represents the flow
rate. The partition function Z,,(q) of the river-width dis-
tribution is defined as the moments of the river width

Z, (=3 wf, (12)
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FIG. 5. f—a spectrum of flow distribution in the

Scheidegger river network.

where the summation ranges over all bonds on the river
network. The partition function scales as

Z,(q)=L57 . (13)

By using Eq. (11), the exponent £(q) is related with the
exponent £(q)

&(g)=PB&(q) . (14)

Therefore, the river-width distribution shows the mul-
tifractality. The scaling properties of the river width
should be characterized by the infinite set of exponents.
For a sufficiently large g, £(q)/q gives the scaling ex-
ponent of the largest river width. Similar to the flow
rate, the normalized partition function Z,(q) is defined
as

ZI(qQ)=Zy(q)/{Zy(1)}7 . (15)

For a sufficiently large L, the partition function Z;(q)
scales as

zZ(g~L 7. (16)

The following relationships are found:
T,(@)=B7(q) , a,(qg)=Balq), f,(@)=Bf(q), a7

where 7,(9)=qa,(q)— f,(q). Therefore, if the width w
of rivers scales as Eq. (11), the river-width distribution
also shows the multifractality.

In summary, we found the multifractality of the flow
distribution in the Scheidegger river-network model. We
derived the f —a spectrum of the normalized flow distri-
bution. We showed that the exponent of the drainage
basin of a single river was exactly given by d,=2—a(x).
We also found that the river-width distribution showed
the multifractality.
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