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A crossover behavior is investigated in Scheidegger’s river-network model [Bull. Int. Acco. Sci. Hy-
drol. 12, 1 (1967); 12, 15 (1967)] where a river meanders left with probability p and right with probability
1—p. Near p =1 (or p =0), the crossover phenomenon occurs from linear rivers at smaller length scales
than the crossover length 7, to the river network of a self-affine fractal at larger length scales than ¢,.
For 0 <p <1, the river network always crosses over the self-organized critical state. The mean river size
(S) scales as (S )=t fort<t, and (S) ~t (d, =1.50) for ¢ > t, where d, is the scaling exponent of the
drainage basin area. The crossover length . scales as t,~(Ap)~ !¢ (1/¢=1.033%+0.050) where
Ap=1—p near p=1 (or Ap =p near p =0). The mean river size is described by the scaling form
(S)Y=tf(t/t.) where f(x)=1 for x <<1 and f(x)fzxd”‘1 for x >>1. For a sufficiently small Ap, the
mean river size (S) also scales as {S)~Ap? (y=0.484+0.020). The cumulative river size distribution

Ny scales as Ng=~(Ap) 273§ 7173,

PACS number(s): 05.90.+m, 92.40.Fb, 68.70. +w

Recently, there has been increasing interest in scaling
structures of growth processes such as river networks,
cluster-cluster aggregations, rough surfaces and
diffusion-limited aggregations [1-10]. Branched river
networks are among nature’s most common patterns,
spontaneously producing fractal structures. Rivers have
been studied extensively by a wide variety of researchers
with a variety of techniques and goals. Some investiga-
tors have constructed models for the evolution of an en-
tire drainage network [11-14]. The Scheidegger’s river-
network model is the simplest model that reveals the
essential features of river formation. It has been known
that the cumulative size distribution of rivers in
Scheidegger’s model satisfies the power law

Ng=P(=2S)=S !/ (1

where S indicates the area of the drainage basin of a river
[15,16].

Very recently we proposed the extended Scheidegger
river-network model [17]. The extended river network
shows the scaling behavior depending on the exponent of
the flow-dependent meandering. The river model can de-
scribe the river network with a variety of exponents of
the drainage basin. In the extended river model, we
found that the river-size distribution n(¢) satisfies the dy-
namic scaling law

ns(t)=Sf(S/t7) )

where the dynamic exponent z is given by the exponent of
the drainage basin area. The scaling relationship
(2—7)z =1 was found. Also, we found that the flow dis-
tribution shows a typical multifractal character.

Doering and ben-Avraham investigated the simplest
model of a diffusion-limited reaction [18]. This model
also corresponds to the irreversible one-species aggrega-
tion process “with no injection” [19]. They showed the
preasymptotic behavior corresponding to various initial
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conditions. The model can be related with the columnar
growth [20]. Meakin and Krug [20] presented a theoreti-
cal analysis of the columnar growth by mapping to the
coalescing particles on the line. Scheidegger’s river mod-
el is equivalent to the irreversible one-species coagulation
“with injection” [19]. The scaling behavior of the aggre-
gation process with injection is different from that of the
aggregation without injection [19]. However, in the ag-
gregation process with injection, the preasymptotic
behavior has not been investigated. It is interesting how
the scaling behavior of river networks depends on the
meandering probability p in real river networks. It will
be expected that a crossover occurs from a nonfractal
structure to the fractal structure, depending on the
meandering probability p. In Scheidegger’s river-network
model, the crossover phenomena have been unknown un-
til now. If the crossover occurs, there is an open question
as to how the crossover phenomenon can be described by
a crossover scaling.

In this paper, we study the crossover phenomenon in
Scheidegger’s river-network model where a river
meanders left with probability p and right with probabili-
ty 1—p. We show that near p =1 (or p =0) the crossover
phenomenon occurs from linear rivers at smaller length
scales than the crossover length ¢, to the river network of
a self-affine fractal at larger length scales than ¢,. We find
that the mean river size {.S) can be described by the scal-
ing form (S)=tf(t/t,) where f(x)=1 for x <<1 and
f(x)=x"? forx>>1(d,: the exponent of the drainage
basin area).

For later convenience, we introduce Scheidegger’s
river-network model [11,15]. Rains are assumed to be
falling in a stationary and uniform manner on the sites of
the oblique square lattice. One unit of water is injected
into each site per unit of time. Then, the fallen raindrops
go slowly down the slope. When two raindrops collide
with each other, they join and make one drop which runs
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down just like before the collision. Any flow is prohibit-
ed from splitting. Flows are allowed to go left down with
probability p or right down with probability 1—p only in
preferred direction (downstream). As the result, the
rivers do not contain any loops. All branches are direct-
ed upstream. The flow (channel discharge) I; on the site i
is defined. as the amount of flowing water through the site
i per unit of time. The flow on the site i is proportional to
the area S of its drainage basin connecting upstream at
the site i. Each site of the river network can be charac-
terized by the flow of water. If the site { is labeled by the
position (m,n), the flow (channel discharge) satisfies the
equation

~

Im +1,n)=w(m,n)I(m,n
+[1—w(m,n+1)I(mn+1)+1, (3)

where m indicates the downstream direction, w (m,n)
denotes the realization of the flow direction at the site
(m,n) which is equal to 1 when the flow at the site (m,n)
goes right down and O when the flow goes left down, and
w (m,n) is given by

1 probability 1—p

w(m,n)= 1, probability p . @

We perform the computer simulation of Eq. (3) for the
square lattice 10000X 10000. The flow I (m,n) on each
site is calculated under a periodic lateral boundary condi-
tion. For illustration, Fig. 1 shows the typical patterns
obtained by small-size simulations. The patterns (a) and
(b) in Fig. 1 are obtained respectively under p =1 and
p =0.7 for size 15X25. At the p =1 (or p =0) the river
pattern shows the set of linear rivers. For 0<p <1, the
river network eventually approaches the self-affine fractal
with the same scaling property as the original
Scheidegger river model (p =1). We find the crossover
phenomenon from the linear rivers to the self-affine river
network. We define the mean river size as
(S(1))=3ng(t)S?*/3ng(t)S where ng(t) is the river-size
distribution. Figure 2 shows the log-log plot of the mean
river size (S) against the downstream length ¢ near

@ p=1.0

FIG. 1. The typical patterns of river networks generated by
small-size simulation. The patterns (a) and (b) are obtained, re-
spectively, under p =1.0 and 0.7 for size 15X25.
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FIG. 2. The log-log plot of the mean river size {.S) against
the downstream length ¢ near p =1.

p =1. In the set of linear rivers (p =1), the mean river
size scales as (S)~t In Scheidegger’s river network
(p =1) of the self-affine fractal the mean river size scales
as (S) =t The value 1.50 of the exponent gives the
size of the drainage basin area. Near p =1, the mean
river size (S ) crosses over from the linear rivers to the
Scheidegger river network. We define the crossover
length ¢, as the point at which the tangential line of the
slope 1.0 intersects with that of the slope 1.50. The mean
river size scales as

t fort<zt,

(S)~ (5)

t150 tort>¢, .

Figure 3 shows the log-log plot of the crossover length ¢,
against Ap(=1—p). The crossover length ¢, scales as

t.~(Ap)" % with 1/¢6=1.03340.05 . (6)
We propose the scaling ansatz
(S)=tf(Apt?) )
where the scaling function is assumed as follows:
1 for x <1

fx)= _ (8)
%7V for x>> 1.

103 |—

te AN

102 — \

10 I ]
104 10-3 102 10-!
Ap
FIG. 3. The log-log plot of the crossover length t. against
Ap(=1—p).
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FIG. 4. The log-log plot of the rescaled mean river size
¢t~'(S) against the rescaled length Ap % for various Ap.

Here d,(=1.50) is the exponent of the drainage basin
area. The same crossover occurs near p =0. The cross-
over is also described by the scaling form (7). Figure 4
shows the log-log plot of ¢ (S ) against Ap!-% for vari-
ous Ap (<<1). The data points collapse on a single
curve. The scaling ansatz (7) is verified.

Figure 5 shows the log-log plot of the mean river size
(S) against Ap at t =2000. For a sufficiently small Ap,
the mean river size {S) also scales as

(S)=Ap” with y=0.48440.020 . 9)

We study the scaling behavior of the cumulative river-
size distribution. The cumulative river-size distribution
Ny is defined as

Ng=P(zS8)= 3 ng, (10)
s'=S

where ng indicates the size distribution with size S and S
is the area of the drainage basin. Figure 6 shows the log-
log plot of the cumulative river size Ng against size S for
various p at t =2000. With decreasing p, the cumulative
river-size  distribution Ng approaches that of
Scheidegger’s river network (p =4). In order to investi-
gate the scaling behavior of the cumulative river-size dis-
tribution for Ap, we plot the rescaled cumulative size dis-
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FIG. 5. The log-log plot of the mean river size (S ) against
Ap at t =2000.
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FIG. 6. The log-log plot of the cumulative river size Ny
against size S for various p at ¢ =2000.

tribution against the rescaled size. Figure 7 shows the
log-log plot of the rescaled cumulative size distribution
Ap¥Ng against the rescaled size Ap 'S for various p.
The rescaled cumulative size distributions cross over
from the flat line to the line of the slope —1. After the
crossover occurs, all data points collapse on a single
curve. On the scaling region, the cumulative river-size
distribution scales as

Ng=(Ap) /38713 (y=0.484+0.020) . (11

We find the dependence of the cumulative river-size dis-
tribution on Ap.

We try to interpret the found exponents ¢ and d, in
physical terms. The crossover exponent is very close to
unity, showing that Ap <<1 introduces essentially only an
anisotropic length unit, which is related to the turning
probability. The turning probability is defined by the
probability that a line coalesces with the nearest neigh-
bors per unit length in the set of lines [Fig. 1(a)]. The
turning probability is proportional to Ap. Therefore, the
crossover length ¢, is proportional to Ap ~!. We find that
the crossover exponent 1/¢ equals 1. The scaling ex-
ponent d, of the drainage basin area can be intuitively re-
lated to random walks. The basin’s left and right boun-
daries are simple random walks. The drainage basin area
is roughly given by the product (S ) =wt, where w and ¢
indicate the basin’s width and height. The width w is
proportional to ¢!/2 since the boundaries of the basin are
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FIG. 7. The log-log plot of the rescaled cumulative size dis-
tribution Ap” Ny against the rescaled size Ap ~7S for various p.
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random walks. Therefore, the drainage basin area scales
as (S)~t2 Wefindd,=3.

In summary, we find the crossover phenomenon from
the linear rivers to the self-affine river network. We show
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how the crossover can be described by the crossover scal-
ing. We present the scaling form (7) of the mean river
size {S). We find the scaling (11) of the cumulative
river-size distribution for Ap.
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