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One-dimensional cellular automaton (CA) models are presented to simulate bunching of cars in free-
way traffic. The CA models are three extended versions of the asymmetric simple-exclusion model with
parallel dynamics. In model I, the inherent velocities of individual cars are taken into account. It is
shown that bunching of cars occurs since the car with low velocity prevents the car with high velocity
from going ahead. The mean interval {Ax ) of consecutive cars scales as (Ax ) =~t>47t%% where ¢t is
time. In model II, the asymmetric exclusion model is extended to take into account the dependence of
the transition probability 7 upon the interval Ax of consecutive particles (cars): T=Ax "% (a=0). Itis
shown that the mean interval {(Ax ) of consecutive particles scales as {(Ax ) ~t!/'*® by bunching of
cars. In model III, the velocity v of a car depends on the interval Ax of consecutive cars in such a
manner that the transition probability =1 for Ax >x, (x.=1), and for Ax <x., T =(Ax/x.)* Itis
shown that a transition from laminar traffic flow (uncongested traffic flow) to congested traffic flow
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occurs with increasing density p of cars.

PACS number(s): 05.40.+], 02.50.—r, 89.40.+k, 81.10.Bk

I. INTRODUCTION

Recently, traffic problems have attracted considerable
attention. Traffic simulations based on various hydro-
dynamic models have provided much insight [1,2]. How-
ever, the simulation of traffic flow is a formidable task
since it involves many degrees of freedom. Cellular au-
tomaton (CA) models are being applied successfully to
simulations of complex physical systems [3,4]. The one-
dimensional (1D) asymmetric exclusion model can be for-
mulated as traffic jam problems. The 1D exclusion model
is one of the simplest examples of a driven system [5,6].
The model has been extensively studied for understand-
ing systems of interacting particles [7,8]. The 1D ex-
clusion model is used to study the microscopic structure
of shocks [9,10] and is closely linked to growth processes
[11,12]. The two-dimensional versions of the asymmetric
exclusion model were investigated by Biham, Middleton,
and Levine [13] and other researchers [14—17] for simu-
lating traffic flow in two dimensions.

Very recently, Nagel and Schreckenberg [18] intro-
duced a stochastic cellular automaton model to simulate
freeway traffic. They showed that a transition from lami-
nar traffic flow to start-stop waves occurs with increasing
car density as is observed in real freeway traffic. In their
model, each car has an integer velocity v with values be-
tween zero and v.,,. Bach car is accelerated, slowing
down, randomized, or advanced by following four con-
secutive steps. However, the dependence of the velocity
of start-stop waves on v, and the randomization pa-
rameter is unclear. In their model, bunching of cars does
not appear except for a single start-stop wave. Schad-
schneider and Schreckenberg [19] derived the exact re-
sults for the asymmetric exclusion process. They showed
that bunching of cars over a distance of two lattice sites
occurs due to an effective antiferromagnetic interaction.

Musha and Higuchi [20] have shown that traffic flow in
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a highway shows a 1/f power spectrum by measuring
directly the traffic flow in a real highway. They have ob-
served that cars flowing in a highway cluster more and
more when moving ahead. They have suggested that the
traffic flow is described by the Burgers equation. The
Burgers equation is derived from the 1D asymmetric
simple-exclusion model by an appropriate coarse graining
[21]. The 1D asymmetric exclusion model is a micro-
scopic model of the Burgers equation. The velocity field
of the Burgers one-dimensional model of turbulence at
extremely large Reynolds numbers is expressed as a train
of random triangular shock waves. It has been shown
that the number of shock fronts decreases with time as
t % (0<a<1) and consequently the mean interval in-
creases as t* [22,23]. However, bunching (or clustering)
of cars (or particles) never occurs in the 1D asymmetric
simple-exclusion model. Kandel and Weeks [24] studied
the step bunching in the different context of crystal
growth. The step bunching problem is similar to that of
car bunching.

Very recently, some interesting models were proposed
for the density waves in traffic flow from the point of
view of hydrodynamic models [25,26]. Leibig [26] stud-
ied the pattern-formation characteristics of interacting
kinematic waves. He showed that a train of small density
waves develops naturally to a large density wave. This
characteristic is similar to that known in the Burgers
equation. The interacting kinematic waves were observed
in granular flow [27].

In this paper, we present the three CA models of free-
way traffic showing bunching of cars. We extend the 1D
asymmetric simple-exclusion model with parallel dynam-
ics to take into account the car velocity. In real traffic,
individual cars move with the inherent velocity if a car
interacts with other cars. Each car adapts its velocity to
the circumstances of traffic flow when a car interacts with
other cars. Each car moves with a velocity depending
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upon the interval of consecutive cars. The velocity of
cars is included in the transition probability in the asym-
metric exclusion model. In model I, we consider the
bunching of cars by the difference of velocities of cars. A
velocity fluctuation of individual cars is taken into ac-
count where car i/ has the inherent velocity v;,. A car
moving with lower velocity prevents a car moving with
higher velocity from going ahead. Cars flowing in a high-
way cluster more and more when moving ahead. The
bunching of cars is induced only by taking into account
the differences of velocity between individual cars. We
study the scaling behavior of the mean interval of cars
and the distribution of the interval of consecutive cars.

In models IT and III, we consider the bunching of cars
by the interaction of consecutive cars. The interaction
depends on the interval between consecutive cars. In
model II, the dependence of the car velocity upon the in-
terval Ax of consecutive cars is taken into account. At
each time, the velocity of individual cars is determined by
the function of the interval Ax. We consider the case in
which the transition probability T is proportional to
(Ax)™¢% (a¢=0). This means that the car velocity is pro-
portional to the power of the interval. We show that the
mean interval (Ax) of consecutive cars scales as
(Ax )=~tP. The dependence of the scaling exponent 8
upon the exponent « is shown.

In model III, we consider the effect to the safety dis-
tance on the traffic flow. A car moves with the maximal
velocity if the interval of the consecutive car is larger
than the safety distance. When the interval is less than
the safety distance, the car moves with a low velocity
proportional to the interval. We introduce the critical
distance x, into the dependence of car velocity upon the
interval. The critical distance corresponds to the safety
distance. A car moves with velocity 1 if the interval Ax
of consecutive cars is larger than the critical distance x,.
When Ax <x_, the velocity v decreases with Ax in such a
manner that v =(Ax /x.)*. The dynamical transition be-
tween the laminar traffic flow and the congested traffic
flow occurs. In the congested traffic flow, start-stop
waves appear and they interact with each other. We
show the traffic current, the phase diagram, and the
dependence of start-stop waves on the critical distance
Xx..

The organization of the paper is as follows. In Sec. II
we present model I for bunching of cars. We show the
simulation result. In Sec. III we propose model II for
car bunching. We study the scaling behavior of the inter-
val of consecutive cars. In Sec. IV we present model III.
We show the simulation result. Finally, Sec. V contains a
discussion and a brief summary.

II. MODEL I AND SIMULATION

We consider cars flowing in a highway where each car
has the inherent velocity. We try to simulate the traffic
flow by as simple a model as possible. We extend the 1D
asymmetric simple-exclusion model with parallel dynam-
ics to take into account the inherent velocity of cars. The
CA model is defined on a one-dimensional lattice of L
sites with periodic boundary condition. Each site is occu-

pied by a single car or it is empty. For an arbitrary
configuration, one update of the system consists of the
following rule which is performed in parallel for all cars.
Car i moves ahead by one step with the inherent proba-
bility p;, or otherwise, car i does not move with the prob-
ability 1—p,. In the dilute limit of car density, car i
moves ahead with the mean velocity p; at coarse-grained
time scales since car i is not blocked by other cars. The
probability p; corresponds to the inherent velocity v; of
individual cars if car i/ is not blocked by other cars.
When the probability p; =1 for all cars, model I repro-
duces the 1D asymmetric simple-exclusion model. Car i
with lower probability p; prevents car j with higher prob-
ability p; (p; >p;) from going ahead. Car j moves to-
gether with car i with an interval of a few sites. They
form a cluster of cars. Furthermore, the cluster prevents
car k with higher probability p;, (p, >p;) from going
ahead, or the cluster is prevented by car m with lower
probability p,, (p,, <p;) from going ahead. The cluster
grows more and more with moving ahead. Thus bunch-
ing of cars occurs without a specific attractive force. The
bunching is due to the difference of velocity (transition
probability p; ) between consecutive cars.

In this model, the traffic problem in a highway is re-
duced to its simplest form while the essential features are
maintained. The feature includes the flow in one direc-
tion of cars which cannot overlap. Furthermore, this
model possesses the property that the car moving with
lower velocity prevents the car moving with higher veloc-
ity from going ahead.

We consider the simulation process of model I. Initial-
ly, cars are randomly distributed on the sites of one-
dimensional lattice with car density p. Furthermore, the
transition probability p; is assigned to each car. The
transition probability p; assigned to each car does not
change with time. We assume that the probability p; is
uniformly distributed between a and b. We set a =0.5
and b=1.0. The scaling behavior of the interval of con-
secutive cars depends little on the values @ and b. Then,
on each time step, if car 7 is not blocked ahead by another
car, car i moves ahead with probability p;, or otherwise,
it does not move with probability 1—p;. If car i is
blocked ahead by another car, car i does not move. One
update of the system is performed in parallel for all cars.

We perform simulations of model I starting with an en-
semble of random initial conditions where the system size
is L=10° and the initial density of cars is p =0.0-0.4.
Each run is calculated until 10° time steps. A clustering
of cars occurs more and more with increasing time. We
study the scaling behavior of the mean interval { Ax ) be-
tween the car and the next car ahead. We define the
mean interval { Ax ) of consecutive cars as

§ (Ax)znAx
(axy=2=L )

©

> Axny,
Ax=1

where n,, is the distribution of the interval Ax. Figure 1
shows the log-log plot of the mean interval { Ax ) against
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FIG. 1. The log-log plot of the mean interval {(Ax ) of con-
secutive cars against time ¢ for densities p =0.025, 0.05, 0.1,
0.15, 0.2, and 0.3.

time ¢ for the car densities p =0.025, 0.05, 0.1, 0.15, 0.2,
and 0.3. For lower density than p =0.1, the mean inter-
val ( Ax ) scales as

(Ax )~ 10-4750.03 2)

For p > 0.1, the scaling (2) breaks down. For higher den-
sity than 0.3, the interval {(Ax ) approaches a constant
value. In the dilute limit of car density p, the scaling ex-
ponent is consistent with the analytical result 0.5 derived
from the Burgers equation [22,23] with numerical accura-
cy. Figure 2 shows the semilogarithmic plot of the cumu-
lative interval distribution N,, against the interval Ax
for t =103 5X10% 10% and 5X10* where p=0.05. The
cumulative interval distribution N,, is defined as
Nax =3 x'=axMax- For many time steps, the cumula-
tive interval distribution N,, becomes nearly the ex-
ponential function. Figure 3 shows the semilogarithmic
plot of the rescaled cumulative distribution %N,
against the rescaled interval ¢t ~%4’Ax for p=0.05. The
data collapse on a curve. We find that the cumulative in-
terval distribution N,, is described in terms of

Na,~{Ax ) lexp{—BAx/{Ax )}, (3)

where {( Ax ) =~t%*" and B=0.19+0.03 for p =0.05. The
scaling form of the cumulative interval distribution
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FIG. 2. The semilogarithmic plot of the cumulative interval
distribution N,, against the interval Ax for t=10%, 5X 10, 10%,
and 5X 10* where p =0.05.
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FIG. 3. The semilogarithmic plot of the rescaled cumulative
interval distribution t%*’N,, against the rescaled interval
t ~%47Ax for the data in Fig. 2.

agrees with the analytical result derived from the Burgers
equation [22,23].

We study the scaling behavior of the mean cluster size
(s ) of cars. A cluster of cars is defined as a group of cars
of which the interval is within the distance x,. The clus-
ter size of cars depends on the distance x,. However, the
scaling behavior is not very dependent upon the distance
x,. The mean cluster size (s ) of cars is defined the same
as Eq. (1). For lower density than p =0.1, the mean clus-
ter size scales as Eq. (2) with the same scaling exponent.
The scaling exponent of the mean cluster size agrees with
the exponent of the mean interval. The semilogarithmic
plot of the rescaled cumulative distribution %N
against the rescaled cluster size ¢ ~**'s collapses nearly
on a curve for p=0.025. We find that the cumulative
cluster size distribution N; is described in terms of

N,=~(s) lexp{—Cs/(s)}, @)

where (s)=1%% and C=5.43+0.03 for p =0.025. The
scaling form of the cumulative cluster size distribution is
consistent with that of the cumulative interval distribu-
tion except for the constants B and C.

III. MODEL II AND SIMULATION

We present model II and study the scaling behavior of
the mean interval {(Ax ) for car bunching. In model II,
the dependence of velocity upon the interval Ax is taken
into account. The dependence of velocity is introduced
into the transition probability T of particles. We extend
the 1D asymmetric simple-exclusion model with parallel
dynamics to take into account the dependence of the
transition probability T of particle (or car) upon the inter-
val of consecutive particles. The transition probability T
depends only on the distance Ax between the car and the
next car ahead. It is given by

T=Ax"%. (5)

The transition probability T decreases with increasing in-
terval Ax. The transition probability changes with time
since it depends on the interval of the consecutive car.
For an arbitrary configuration, one update of the system
consists of the following rule, which is performed in
parallel for all cars. When a car is blocked ahead by
another car, it does not move ahead. If a car is not
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blocked by another car, it moves ahead by one step with
probability Ax ~¢ (a = 0), or otherwise, it does not move
with probability 1 —Ax ~% 1In the case of a >0, a cluster-
ing or bunching of cars occurs. Cars with shorter inter-
val cluster more and more with moving ahead. Bunching
of cars occurs with increasing time.

We study the scaling behavior of the mean interval
(Ax ) of consecutive cars. The mean interval is defined
by Eq. (1). We perform simulations starting with an en-
semble of random initial conditions where the system size
is L =10°, the initial density of cars is p=0.0-0.5, and
the power a is a=0.05-2.0. Each run is calculated until
10° time steps. At each time step, the transition probabil-
ity of individual particles is calculated by Eq. (5). All
particles are updated in parallel with the transition prob-
ability calculated at each time step. Figure 4 shows the
log-log plot of the mean interval { Ax ) against time ¢ for
car densities p =0.05, 0.1, 0.2, and 0.3 where a=0.2.
For low density p =0. 3, the mean interval scales as

(Ax)=~t8, with B=0.8110.02 . (6)

For lower density than p =0.3, the mean interval crosses
over the straight line (6) with increasing time. The mean
interval ( Ax ) is a characteristic length in the car bunch-
ing. The characteristic length diverges as the power law
(6). We study the dependence of the scaling exponent 8
of the mean interval upon the power a. Figure 5 shows
the log-log plot of the mean interval { Ax ) against time ¢
for the powers a=0.3, 0.5, 0.7, and 0.9 where the car
density p =0.2. The scaling exponent 8 of the mean in-
terval decreases with increasing power a. Figure 6 shows
the plot of the scaling exponent 3 against a. The curve
represents the relation

B=1/(1+a). (7

The data agree with relation (7). The scaling relation (7)
is derived from a simple scaling argument as follows.
The increment A(Ax) of the typical interval Ax is pro-
portional to the transition rate (Ax )~ *At that cars move
ahead within the time period At:

dAx/dt =Ax ™% . (8)
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FIG. 4. The log-log plot of the mean interval {Ax ) against
time ¢ for densities p =0.05, 0.1, 0.2, and 0.3 where a=0.2.
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FIG. 5. The log-log plot of the mean interval {Ax ) against
time ¢ for power =0.3, 0.5, 0.7, and 0.9 at density p=0.2.

~¢1/1+a)  Relation

The typical interval Ax scales as Ax
(7) is obtained.

We study the cumulative distribution N,, of the inter-
val Ax. Figure 7 shows the semilogarithmic plot of the
cumulative interval distribution N,, against interval Ax
for t=10% 5X10% 10% and 2X10* where p=0.2 and
a=0.5. In order to investigate the scaling form of the
cumulative interval distribution, we plot the rescaled cu-
mulative distribution against the rescaled interval. Fig-
ure 8 shows the semilogarithmic plot of the rescaled cu-
mulative distribution t%%3N,  against the rescaled inter-
val t ~%-64Ax for the data in Fig. 7. The data collapse on
a curve. We find that the cumulative interval distribution
is described in terms of

Na~(Ax)"'f(Ax/(Ax)), ©)

where (Ax ) =15 and the scaling function f (x) is nearly
a Gaussian distribution.

In model II, the car bunching (or clustering) occurs
since the transition probability (or velocity) of cars in-
creases with decreasing interval of consecutive cars.
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FIG. 6. The plot of the scaling exponent 3 against the power
a.
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FIG. 7. The semilogarithmic plot of the cumulative interval
distribution N,, against the interval Ax for t =103, 5X 10%, 10%
and 2 X 10* where p=0.2 and a=0.5.

IV. MODEL III AND SIMULATION

We present model III. We study the effect of the safety
distance on the traffic flow. We show the dynamical tran-
sition between the laminar traffic flow and the congested
traffic flow. The critical distance x, is introduced into
the dependence of car velocity upon the interval. The
critical distance corresponds to the safety distance.
When the interval between consecutive cars is larger than
the safety distance, the car moves with the maximal ve-
locity. If the interval is less than the safety distance, the
car moves with low velocity. We extend the 1D asym-
metric exclusion model as follows. When the distance Ax
between a car and the next car ahead is larger than the
critical distance x, and the car is not blocked ahead by
another car, the car moves ahead by one step. If the in-
terval Ax is equal to the critical distance x, or smaller
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FIG. 8. The semilogarithmic plot of the rescaled cumulative
distribution t%%°N,, against the rescaled interval ¢ "*%Ax for
the data in Fig. 7.

than x_, and the car is not blocked ahead by another car,
the car moves ahead by one step with probability
(Ax /x.)* (a>0), or otherwise does not move ahead with
probability 1—(Ax /x.)*. When the car is blocked ahead
by another car, it does not move even if the blocking car
moves out of the site during the same time step. For an
arbitrary configuration, one update of the system is per-
formed in parallel for all cars. Then, the transition prob-
ability T is given by

T=1 for Ax >x, and T=(Ax/x_,)* for Ax <x, .
(10)

The parameter a represents the dependence of car veloci-
ty v on the interval Ax of consecutive cars. In the limit of
x. =1, model III reproduces the 1D asymmetric simple-
exclusion model.

We perform simulations of model III starting with an
ensemble of random initial conditions where the system
size is L =10% the initial density of cars is p =0.0-1.0,
and the critical distance is x, =1-10. Each run is calcu-
lated until 10* time steps. The data are averaged over 50
runs. At p=0.1, the start-stop wave is formed at an ini-
tial stage but disappears in due course of time. Finally,
the traffic flow reaches a steady state in which the dis-
tance between a car and the next car ahead becomes
larger than the critical distance x, and all cars move with
maximal velocity v =1. For p=0.3, a typical start-stop
wave is formed, propagates backward throughout the
space, and they interact with each other. Figure 9 shows
the plot of the velocity v,, of the start-stop wave against
the critical distance x, for p =0.4 and a=1.0. The data
points are indicated by the circles. The solid curves indi-
cates the function 1/x,. The velocity of the start-stop
wave is proportional to the inverse of the critical dis-
tance:

v,=1/x, . (11)

The velocity v,, depends strongly on the distance x,. It
depends little on the car density p and the parameter a.

05—

FIG. 9. The plot of the velocity v, of the start-stop wave

against the critical distance x, for p =0.4 and a=1.0. The solid
curve indicates the function 1/x,.
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FIG. 10. The plot of the mean traffic current (J ) against car
density p for x, =1 (white circles), 2 (black circles), 3 (triangles),
and 5 (squares) where a=1.0.

Figure 10 shows the plot of the mean traffic current
(J) against car density p for the critical distance
x,=1,2,3,5 and @=1.0. The mean traffic current (J ) is
obtained by averaging over 3000 times steps except the
initial stage. The current (J) for x,=1 represents that
of the 1D asymmetric simple-exclusion model. The
profile of current changes significantly with the critical
distance x.. For low values of car density p, the current
agrees with that of the 1D asymmetric exclusion model.
In the values of car density, all cars move ahead with the
maximal velocity v=1. For high values of car density,
the current becomes less with the critical distance x,.
Figure 11 shows the phase diagram between the car den-
sity p and the critical distance x, for a=1.0. The data
points are indicated by the circles. The data are on the
curve 1/(x,+1). The region on the left-hand side of the
curve represents the laminar traffic flow (uncongested
traffic flow). The region on the right-hand side of the
curve represents the congested traffic flow in which
start-stop waves are formed and interact with each other.
The dynamical transition point p, between the laminar
flow and the congested traffic flow is given by

10 —
| 1
Xe | xc+l
5 |— \o/
\ congested traffic
L\
laminar \
~  flow
1 1 1 i l\l | 1 L 1
0 0.5 1

FIG. 11. The phase diagram between car density p and criti-
cal distance x. for a=1.0. The solid curve indicates the func-
tion 1/(x.+1). The region on the left-hand side of the curve
represents the laminar traffic flow. The region on the right-
hand side of the curve represents the congested traffic flow in
which start-stop waves are formed and interact with each other.
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FIG. 12. The plot of the traffic current {J ) against car densi-
ty p at x,=35 and a=0.5 (white circles), 1.0 (black circles), 1.5
(triangles), and 2.0 (squares).

p.=1/(x,+1). (12)

Figure 12 shows the plot of traffic current {J) against
car density p at the critical distance x, =35 for various
values of the power a. The current profile depends on
the power a. However, the transition point p. changes
little with the power a. The traffic current (J) agrees
with that (represented by the straight line) of the 1D
asymmetric exclusion model until the transition point p,.
For the regions of the congested traffic flow, the current
decreases with increasing power a. For a> 1, the max-
imum value of current depends little on the power a. For
O0<a< 1, the maximum value of current increases with
decreasing a.

V. DISCUSSION AND SUMMARY

We compare models I, II, and III with other models.
In models I and II, car bunching occurs without stopping
cars. All cars are always moving ahead. However, in
Nagel and Schreckenberg’s CA model, car bunching ap-
pears as a start-stop wave. Cars are always stopped. In
Kerner and Kohnhauser’s continuum model, car bunch-
ing occurs as a density wave and it propagates backward.
Cars are always stopped. In Burgers turbulence, a train
of shocks coalesces with forward propagation. The
bunching behavior of models I and II is similar to that of
Burgers turbulence. On the other hand, in model III car
bunching appears as start-stop waves. The behavior is
similar to that of Nagel and Schreckenberg’s model.

In summary, we presented the three CA models for car
bunching in a highway. In model I, we introduced the in-
herent transition probability of each particle into the 1D
asymmetric exclusion model to take into account the in-
herent velocity of each car. We showed that car bunch-
ing occurs due to the difference of the inherent velocity
and the mean interval { Ax ) of consecutive cars scales as
(Ax )=t%% In model II, we took into account the
dependence of car velocity upon the interval of consecu-
tive cars. We found that the mean interval of consecutive
cars scales as { Ax ) =t!/11*% by car bunching where the
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transition probability T=Ax ~ % In model III, the criti-
cal distance x, was introduced for the safe interval of
consecutive cars. We showed that the transition occurs
from laminar traffic flow to congested traffic flow.
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