工学部改組に伴う物理実験の紹介と2次元レーザ回折 の教材開発

SURE 静岡大学学術リポジトリ Shizuoka University REpository

メタデータ	言語: jpn
	出版者:
	公開日: 2016-06-08
	キーワード (Ja):
	キーワード (En):
	作成者: 増田, 健二
	メールアドレス:
	所属:
URL	https://doi.org/10.14945/00009502

工学部改組に伴う物理実験の紹介と2次元レーザ回折の教材開発

増田 健二

技術部 プロジェクト・安全支援部門

1. はじめに

大学の教養課程での物理学実験の中で光学の占める割合は大きく、光学実験は視覚的で分かりや すく、教育的にも重要な役割を担ってきた。光応用技術の基礎となる古典的な光学の理論および技 術である回折や干渉の実験をもとに、光の波動性について理解を深めることが教育的に有効と考え られる。物理学実験の中の回折干渉実験としては、回折格子を分散系とした分光計を用いて、光の 波長を測定する実験、やHe-Neレーザなどの平行単色光を用いた回折・干渉の実験^{1,2)}が紹介されて いる。静岡大学(教養部)では、1982年(昭和57年)4月から「レーザ光の回折干渉の実験³」」を 理・工・農学部の2年次物理学実験で実施している。実験の内容としては、複スリットおよび回折 格子(対物マイクロメータ)による干渉縞の間隔からレーザ光の波長を求める実験、単スリットお よび円孔(ピンホール)からの回折光の強度分布の間隔からスリットの幅や円孔の直径を求める実 験などである。物理学実験に導入した当初は回折格子の代わりに対物マイクロメータの目盛線を用 い、単スリットはカッターの刃を張り合わせたもの、円孔はアルミ箔に針で穴を開けたもので代用 していたが、導入2年後からは、市販のスリット(幅75µm)、円孔(直径0.1mm)、透過型回折格子 (格子定数20µm)を使用している。この他の回折物体のサンプルとしては、針金(直径0.1mm, 0.3mm)、髪の毛、ハンカチの織目などの回折縞の観察を行っている。

そこで本研究では、2次元回折実験の教材開発を行う。透過型回折格子を直交させて貼り付けたものを用いた2次元回折実験⁴⁾が紹介されている。この実験では、回折格子の交差した部分が格子点で干渉をしてX軸・Y軸座標に等間隔の回折縞(点列)を形成する。我々は、二次元回折実験のサンプルとして、スマートホンのタッチパネル(透明電極基板)を使用した^{5,6)}。現在は、物理実験にタッチパネルによる二次元回折縞の観察を導入した段階であり、今後は、二次元回折格子による回折縞の座標点を基準にして、タッチパネルの電極により生じる回折縞の間隔の測定からX軸・Y軸の電極間の距離を求める実験への展開を検討している。

2. 回折・干渉の原理

2.1 回折格子による干渉

等しい幅*a*をもつ多数のスリットを等間隔*d*で規則正しく並べたものを回折格子(grating)といい、*d*を格子定数という。回折格子に平行光線を入射させると、各スリットによって回折した光が、後方のスクリーン上に明暗の分布をもつ「回折縞」をつくる。回折格子の場合、スリットが多数あるから、干渉の効果が強調されて、明線が鮮明に現れる。

いま、第1図のように、波長 λ の入射光を回折格子(スリットの間隔d、総数N、幅a)へ入射したとき、回 折格子からの回折光のスクリーン上での「回折縞」の強さ(明るさ)は、

$$I_{G} = (\texttt{比例定数}) \left[\frac{\sin \frac{\alpha}{2}}{\frac{\alpha}{2}} \right]^{2} \left[\frac{\sin \left(N \frac{\delta}{2} \right)}{\sin \left(\frac{\delta}{2} \right)} \right]^{2} \tag{1}$$

の関係式で与えられる。最初の因子 $\{\sin(\alpha/2)/(\alpha/2)\}^{2}$ は、個々のスリットによる回折に相当し、 α とスリット幅aとは、 $\alpha = 2\pi a \sin \theta / \lambda$ の関係である。

2番目の因子 $\{\sin(N\delta/2)/(\delta/2)\}^2$ は、各スリットから送りだされる回折光同士の干渉の効果を表している。回折光の傾き角を θ とすると、 δ は

$$\delta = \frac{2\pi}{\lambda} d\sin\theta \tag{2}$$

と表わされる。 2 番目の因子は、 $\delta = 2m\pi$ (*m* は整数)のとき、極大になる。これは、隣り合う スリットからの回折光の光路差 $d\sin\theta$ が

$$d\sin\theta = m\lambda \qquad (m = 0, \pm 1, \pm 2, \pm 3, \ldots) \tag{3}$$

を満たす θ_m 方向で回折縞が非常に明るくなることに対応する。これをm次の主極大という。(3)式より、

$$\lambda_m = \left(\frac{1}{m} d\sin \theta_m\right) \tag{4}$$

と求めることができる。 $I_G \epsilon \sin \theta$ の関数とする概念図は、図 2 のようになる。

2.2 単スリットによる回折

波長 λの平行光線が幅 d のスリットに垂直に入射したとする。かりに、スリットの幅が無限に小さいとする と、波のホイヘンスの原理によって、回折光(要素波)は四方に一様に広がる。しかし、スリットの幅が有限の 場合は、スリットの各点から出た要素波が互いに干渉し合うことになって、その結果、スリットの後方に回折 光の明暗の分布、すなわち「回折縞」をつくる。波長 λ の平行光線が幅 d のスリットに垂直に入射したと すると、明暗の分布は式(5)で表される。

$$I = (\overline{\mathbb{R}} \bigotimes) \left\{ \frac{\sin\left(\frac{\pi d}{\lambda} \sin\theta\right)}{\left(\frac{\pi d}{\lambda} \sin\theta\right)} \right\}^2$$
(5)

・ 暗線(光の強さが極小)の条件は、

 $d\sin\theta = m\lambda (m = \pm 1, \pm 2, \pm 3, \cdots)$ (6) を満たす θ の方向の場合である。

・ 明線(光の強さが極大)の条件は、

$$d\sin\theta \approx \left(m + \frac{1}{2}\right)\lambda$$
 $(m = \pm 1, \pm 2, \pm 3, \cdots)$ (7)

を満たすの方向の場合である。

3. レーザ光の回折・干渉実験

本学工学部の2年次物理実験で行っている「レーザ光の回折干渉実験」の測定系を図4に示す。 X-Z 軸ステージ上に置いたスリット支持台に挟んだ回折物体(単スリット等)に、He-Neレーザ (632.8nm, 1mW)の光を当て、スクリーン板の回折・干渉縞を金尺(0.5mm)を用いて測定する。 今回の研究では、He-Neレーザ(1mW)では、輝度不足を生じたため、半導体レーザ(532nm,40mW) を使用する。

3.1 CCD カメラを用いたレーザ光の回折実験の測定系

図 5 にレーザ回折投影法による回折実験の測定系の概略図を示す。半導体レーザー(532nm, 40mW)を用い、3mの距離からサンプルに垂直に照射する。サンプルの表面からの回折光を前方の スクリーンに投影して、スクリーンに映し出される回折縞を広角レンズを取り付けた CCD カメラ で撮影する。今回は、CCD カメラの総画素数を 35 万画素(1,360×1,024pixel)に設定して、広角レ ンズを用い、CCD カメラとスクリーンの距離を固定して撮影する。画角(撮影面積)サイズは、サ ンプルとスクリーンの距離 L によって規定される。L=1.128m の場合、画角サイズは 280×211mm と なり、解像度は、0.206mm/pixel(横:280mm /1,360pixel,縦:211mm / 1,024pixel)となる。物理実 験のサンプルの単スリット(幅 75µm)と円孔(q=0.1mm, q=0.3mm)の計測を行う。

図4 レーザ光の回折・干渉の物理実験の装置

3.2 単スリットによる回折

単スリットをスリット支持台に挟み、レーザ光を 当てると、スクリーン上に図 6 のような回折縞が 現れる。単スリット(幅 d)からの回折強度分布の 暗線の条件式(6)における $\sin \theta$ は、スクリーン 上の位置 x_m が物体とスクリーン間の距離 Lに 比べて十分に小さいとき ($x_m \ll L$)、成り立ち、 近似式(8)となる。

$$\sin \theta_m = \frac{\text{OX}_m}{\text{GX}_m} = \frac{x_m}{\sqrt{L^2 + x_m^2}} \approx \frac{x_m}{L}$$

細線直径d (スリット幅d)式(6)と式(8)より、

$$d = \frac{m\lambda L}{x_m} \qquad (m = \pm 1, \pm 2, \pm 3, \cdots)$$
(9)

図5 レーザ光の回折投影法の測定系

図6 単スリットによる回折

(8)

-39-

単スリット幅を回折縞の暗線の間隔から求める。単スリットに 532nm レーザを当てると、スク リーン上に図7のような回折縞が現れる。この回折縞を CCD カメラ(BITRAN BU-51LN)で撮影 する。図7に画像データ、図8に光強度を数値化(テキストデータ)した中心軸の断面データを示 す。 0 次の明線を挟んで左右に現れる暗線(光の強さが極小)部分 X_m をテキストデータから読み 取る。0 次に近い位置から順番に8次まで(左はマイナス、右はプラス)次数の番号を付ける。次 数間の暗線の位置 X_m を測り、暗線の間隔 x_m を(10)式より求める。

$$x_m = \frac{1}{2} \left(X_m - X_{-m} \right)$$
(10)

図 8 の回折強度分布のグラフから次数間 ($m = \pm 1 \sim 8$)の暗線の位置を 0.053mm/pixel の精度で読み取る。(10)式より暗線間隔 x_m の平均値および平均 2 乗誤差は、

 $x_m = 8.070 \pm 0.046$ (mm)

となり、距離 L=1.128m、 半導体レーザ の波長 $\lambda=532nm$ を(9)式に代入して単スリ ットの幅 ($d=75\mu m$)を求めると、

 $d = 74.36 \pm 0.43$ (μ m) となり、ほぼ妥当な値となった。

-7, -5, -3, -1, 1, 3, 5, 7, -8, -6, -4, -2, 0, 2, 4, 6, 8

図7 単スリット(幅75µm)による回折縞の暗線の次数

図8 単スリット(幅75µm)による回折強度分布

4. 2次元回折実験

4.1 顕微鏡による表面形状の測定

図9に、顕微鏡による表面の微細形状の測定系を示す。サンプルの背面からNa ランプを用いて、 単色(橙色:589nm)平行光線をサンプル表面に垂直に入射させると、表面の凸形物で回折した光 が観察できる。微細構造物の撮影には、読み取り顕微鏡筒(島津理化 NRM-2XZ)の部分を利用す る。この顕微鏡筒は、倍率50倍、焦点距離30mmであり、XYZ ステージに取り付け手動で焦点を 合わせ、微細構造の加工された表面形状を撮影する。今回撮影に使用する CCD カメラ (BITRAN BU-51LN) は、モノクロで受光感度特性(回折効率)は500~650nm が高く、画素数は140 万画

素(1360×1,024pixel)と高解像度である。測定精度 は、撮影する面積によって規定される。顕微鏡を使 用した場合、画角(撮影面積)は2.38×1.79mmとな り、1.75µm/pixel(横:2.38mm/1,360pixel、縦:1.79 mm/1,024pixel)となる。

図 10(a)に、透過型回折格子(20µm 島津理化製) を直交させて貼り付けた2次元回折格子の写真を示

図9 顕微鏡による表面微細形状の測定系

す。透過型回折格子は、金属被膜エッチング法に より帯線が等間隔に並んだ格子構造になっており、 直交させた場合を顕微鏡で見ると図 10(b)のように 網目模様になっている。

図 10 透過型回折格子(20µm)と顕微鏡写真

		200.000.000		
	0 MA 0 MA 0 MA			
	200 200 200			
		0 m 0 m 0 m		
		0 MB 0 MB 0 MB		
		G	G	
				1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1
		0 m 0 m 0 m		
		CH 21 CH		1 144
				10.000
			2. 2. 2.	1 144
10 200 200 1	7 10 7 10 7 10	0 10 0 10 0 10 10 10 10 10 10 10 10 10 1	2	-
	210 210 210		C	
	이야 있는 것을	2	# 150 m	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
10 TH TH 1	2(1) 20 20		= 150μm-	1 2 4 4
10 S 10 S 10 S	5 11 11 11		210.000 210	1000
W 2W 2W 2	787 CM 718	7 H 7 H 7 H	Contractory of the local division of the loc	
NT 210 210 2	210 213 210	200 200 200		

図 11 iPhone-4S のタッチパネルの顕微鏡写真

サンプルとして、iphone 4S の透明電極(タッチパネル)の顕微鏡写真を図 11 に示す。サイズの 指標として、回折格子(格子定数 20µm)を写真の右と下に添付した。iphone 4S の電極の幅は、縦 75µm (150µm/3)、横 21.4µm (150µm/7) 程度であり、等間隔に並んだ長方形(30×20µm)程度の大きさの (薄膜) 電極が確認できた。

4.2 レーザ回折投影法による回折パターン計測

図5にレーザ回折投影法による回路パターンの測定系の概略図を示す。図12に2次元格子による回折縞の画像を示す。図10(b)の顕微鏡と比較してみると、等間隔の帯線の交差した部分が格子 点となって、2次元格子に相当する点列となって回折縞を形成する。

図 12 2次元格子による回折縞

図13 2次元格回折縞の中心軸強度分布

図 13 より、中心軸の回折縞間隔(pixel 数)を求めると、縦軸(実線)は 146.0±0.9pixel であり、 横軸(点線)は 145.3±1.9pixel であった。回折縞の距離 x は解像度(0.206mm/pixel)に pixel 数を掛けて 算出する。レーザの波長($\lambda = 532$ nm)、L はサンプルとスクリーン間の距離(1.128m)。(11) 式を用 いて、回折格子の距離(格子定数)d を算出する。縦軸・横軸とも表示値 20 μ m とほぼ一致した。

図 14 に iphone 4S の回折縞の画像を示す。図 11 の顕微鏡画像と比較した場合、回折では、縦・横 が逆になって回折縞を形成するため、顕微鏡画像を 90°回転させて比較する。電極部分が回折縞 (輝

図 14 iPhone-4S による回折縞

図 15 iPhone-4S の中心軸強度分布

点)として構成され、光強度が大きいことが分かる。図 15 に縦と横の中心軸の強度分布グラフを 示す。図 14 の回折縞の縦軸が実線、横軸が点線である。図 15 より、縦軸(実線)は 38.7±0.5pixel であり、横軸(点線)は 135.5±1.2pixel であった。回折縞の間隔を pixel 数から求め、(9)式をもとに 電極間の距離を算出する。 λ はレーザの波長(532nm)、Lはサンプルとスクリーン間の距離(1.128m)。 xは解像度(0.206mm/pixel)に pixel 数を掛けて求める。電極間の距離 dを算出する。

縦軸: $d = \frac{\lambda L}{x} = \frac{532 \times 10^{-9} \times 1.128}{0.206 \times 10^{-3} \times 38.7} = 75.3 \times 10^{-6} [\text{m}],$ 横軸: $d = \frac{\lambda L}{x} = \frac{532 \times 10^{-9} \times 1.128}{0.206 \times 10^{-3} \times 135.5} = 21.5 \times 10^{-6} [\text{m}]$

顕微鏡画像(図 11)の格子定数から電極間の距離dを求めると縦が 75µm、横が 21.4µm 程度となった。回折縞の間隔xから電極間の距離dを求めた結果は、縦軸が $d = (75.3 \pm 1.0) \times 10^{-6}$ [m]、横軸 $i d = (21.5 \pm 0.2) \times 10^{-6}$ [m] となり、顕微鏡画像の値と誤差の範囲内で一致した。

5.まとめ

本学の2年次物理実験では、レーザ光の回折実験を1982年33年前に導入した。光の波動性を視 覚的に分かりやすく理解できる重要な実験種目となっている。当初から行っている回折格子(対物 マイクロメータ)や複スリット(ロンキー・ルーリング)を用いて He-Ne レーザの波長(632.8nm) を測定する実験に加えて、単スリット、円孔の径を測定する実験を行っている。今回取り入れたサ ンプル(2次元回折格子・タッチパネル)は、2次元回折縞(図12,図14)で測定でき、図10(b), 図11のように遊尺顕微鏡で観察できることから、顕微鏡測定とレーザ回折測定を相互に行うこと ができる。このことから、物体の縦横が逆に回折することや回折縞の大きさは物体の大きさに反比 例することなど、回折現象を理解する上で教育的にも有効であると考える。

参考文献

- 1) 霜田光一:「レーザーによる光学実験-物差しの mm 目盛で光の波長を測定する 」 物理教育 16-1 (1968) 1-4
- 2) 北原隆:「レーザーの回折実験-対物マイクロメータの目盛線で光の波長を測る」 物理教育 29-3 (1981) 233-236
- 3) 静岡大学教養部物理学教室:「物理実験指導書 第10訂版」 (1982) 103-114
- 4) 大阪市立大学理学部物理学科:「物理学実験 第3版」 東京教学社 (2000) 105-111
- 5) 增田健二, 寺尾健, 臼杵深, 三浦憲二郎: 精密工学会春季学術講演会講演論文集 C67 DVD (2015.3.17-19)
- 6) 增田健二:第32回(2015年) 日本物理教育学会年会講演論文集 101 (2015.8.8-9, 九州大学)