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Delay effect on phase transitions in traffic dynamics

Takashi Nagatani and Ken Nakanishi
Division of Thermal Science, College of Engineering, Shizuoka University, Hamamatsu 432, Japan

~Received 24 November 1997!

A dynamical model of traffic is proposed to take into account the effect of acceleration delay. In the limit of
no delay, the model reproduces the optimal velocity model of traffic. When the delay is small, it is shown that
the phase transition among the freely moving phase, the coexisting phase, and the uniform congested phase
occurs below the critical point. Above the critical point, no phase transition occurs. The valueac of the critical
point increases with increasing delay time 1/b, wherea is the friction coefficient~or sensitivity parameter!.
When the delay time is longer than12 , the critical point disappears and the phase transition always occurs. The
linear stability theory and nonlinear analysis are applied. The critical point predicted by the linear stability
theory agrees with the simulation result. The modified Korteweg–de Vries~KdV! equation is obtained from the
nonlinear analysis near the critical point. The phase separation line obtained from the modified KdV equation
is consistent with the simulation result.@S1063-651X~98!03706-4#

PACS number~s!: 05.70.Fh, 05.70.Jk, 89.40.1k
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I. INTRODUCTION

Recently, traffic problems have attracted considerable
tention@1#. Knowing the properties of a traffic jam is impo
tant in our life. Traffic jams are classified into two types: o
is the spontaneous jam and the other is the causal jam
causal jam is induced by such hindrances as car accid
tunnels, and slopes. A spontaneous jam appears in cong
traffic without the hindrances. Traffic jams have been stud
by several traffic models: car following models@2–5#, cellu-
lar automaton models@6–19#, gas kinetic models@20–25#,
and hydrodynamic models@26,27#.

The transition between the spontaneous jam and fre
moving traffic has been investigated by several research
Nagel and Schreckenberg@6# have proposed the cellular au
tomaton model for the transition to the spontaneous ja
Kerner and Konhauser@26# have presented the hydrody
namic model. Bandoet al. @2# have proposed the optima
velocity model of traffic as an extended version of the
following models. In these models, jamming transitions b
tween the freely moving phase and the jammed phase h
been found. Furthermore, it has been shown that there e
a hysteresis near the transition point in the fundamental
gram. Recently, Krauss, Wagner, and Gawran@28# have
found that there is a metastable region near the trans
point in the Gipps model. It is known that the hystere
phenomenon is due to the metastability. Barovicet al. @29#
have showed that the metastability occurs in an exten
version of the Nagel-Schreckenberg model. Kurtze and H
@30# have derived the Korteweg–de Vries equation from
fluid dynamic traffic model to describe the traffic jam. K
matsu and Sasa@31# have derived the modified Korteweg–d
Vries ~MKdV ! equation from the optimal velocity model t
describe the kink-antikink density wave~traffic jam!. It has
been found that there is a critical point in the hydrodynam
and optimal velocity models. The phase transition occurs
low the critical point. Near the critical point, the characte
istic length and time scale as (ac2a)21/2 and (ac2a)23/2.
The scaling exponents in the optimal velocity model are c
sistent with those in the fluid dynamic model.
571063-651X/98/57~6!/6415~7!/$15.00
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Very recently, Nagatani presented the power-law mo
to describe the traffic jams@32#. The power-law model is an
extended version of the optimal velocity model. It w
shown that the phase transition and critical behaviors dep
strongly on the power. The phase transition and critical
havior are definitely different from the other models. It w
found that the scaling exponents are different from those
the optimal velocity model. The power-law model of traffi
belongs to the different universality class from the optim
velocity and hydrodynamic models.

Generally, when a driver accelerates one’s car, a de
occurs due to the car performance or driver’s adjustme
The delay may have an important effect upon the property
traffic flow. In particular, we are interested in the effect
delay upon the jamming transition. There is an open ques
whether or not the delay affects effectively the traffic flow

In this paper we present a dynamical traffic model to ta
into account the effect of acceleration delay. We investig
the effect of delay upon the phase transition and critical p
nomenon by using computer simulation, the linear stabi
theory, and the nonlinear analysis. We show that the ph
transition depends largely on the delay time of accelerat
We calculate the neutral stability line and the critical po
from the linear stability theory. We derive the MKdV equ
tion for describing the traffic jam. We compare the simu
tion result with the analytical result. We show the similari
between the jamming transition and the conventional liqu
gas phase transition. We discuss the similarity between
metastability and the spinodal decomposition.

The organization of the paper is as follows. In Sec. II w
propose a dynamic traffic model taking into account the
lay. In Sec. III we give the simulation result. The dependen
of the critical point on the delay time is shown. The pha
separation line is calculated and its dependence on the d
time is shown. In Sec. IV the stability of uniform traffic flow
is analyzed by the linear stability theory. The neutral stabi
line and critical point are obtained. In Sec. V we apply t
nonlinear analysis to the traffic flow near the critical poin
We derive the MKdV equation for the traffic jam. The pha
6415 © 1998 The American Physical Society
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6416 57TAKASHI NAGATANI AND KEN NAKANISHI
separation line is calculated by the nonlinear wave equat
Section VI give a summary.

II. DYNAMIC MODEL

We propose a dynamical traffic flow model. The mode
an extended version of the optimal velocity model propo
by Bandoet al. @2#. A driving force acts on the car to acce
erate it. Simultaneously, a friction force acts on the car.
assume that the driving force depends on the headway
time. The equation of motion of carj is

d2xj /dt25A~Dxj ,t !2adxj /dt, ~1!

wherexj is the position of carj , Dxj (5xj 212xj ) is the
headway, anda is the friction coefficient. A(Dxj ,t) repre-
sents the driving force to accelerate carj . The second term
on the right-hand side represents the friction force. We
sume that the car velocity becomes the optimal veloc
V(Dxj ) in the steady state with no jam. The driving forc
approaches toaV(Dxj ) after sufficiently large times. We ca
aV(Dxj ) the optimal driving force. It is assumed that the
driving force approachesaV(Dxj ) with a first-order delay
1/b. Then the equation of the driving force is

dA/dt5b$aV~Dxj !2A%, ~2!

with

V~Dxj !5tanh~Dxj2xc!1tanhxc , ~3!

wherexc is the safety distance and 1/b represents the dela
time. V(Dxj ) represents the optimal velocity. The optim
velocity function ~3! is consistent with that of Bandoet al.
@2#. If a jam does not occur, the car velocity becomes
optimal velocityV(Dxj ) in the steady state. In the limit o
b→`, our model described by Eqs.~1!–~3! reproduces the
original optimal velocity model proposed by Bandoet al.
@2#. This limit corresponds to the case of no delay when
driver accelerates one’s car. In the optimal velocity mod
the friction coefficienta is called the sensitivity. With de
creasingb, the delay time 1/b increases. Then it takes mor
time for the driving force to approach the optimal drivin
force. In this model the maximal and minimal velocities a
two and zero, respectively. The optimal velocity increa
monotonically from the minimal velocity to the maximal ve
locity with increasing headwayDxj . By introducing the de-
lay, it is expected that the traffic flow changes effective
with the delay. In the following sections, we investigate t
traffic properties of the model described by Eqs.~1!–~3!.

III. SIMULATION AND RESULT

We study the phase transition in the model described
Eqs. ~1!–~3!. We perform a numerical simulation for th
model. Initially, cars are randomly distributed on the on
dimensional space with car densityr and initial velocityv0 .
The boundary is periodic. In order to form a single jam
hindrance is put at a point on the one-dimensional space.
assume that when a car reaches the hindrance it slows d
instantly to low velocityvh . In time, a single jam is formed
just behind the hindrance. After the jam is formed, the h
drance is removed. The jam propagates backward with c
n.

d

e
nd

s-
y

e

a
l,

s

y

-

e
wn

-
n-

stant propagation velocityvp . Once the single jam is formed
for a special range of density, the jam is stable and does
break up. The jam has the symmetric form of the kin
antikink density wave. The stable jam occurs at an interm
diate density. For low density, a jam disappears in time a
all cars move freely with nearly maximal velocity. For hig
density, a jam also disappears in time and a congested
form traffic flow occurs. Thus we can make a stable jam
the one-dimensional space for special values of density.
take the number of cars to be 100–400. The safety dista
is set toxc55.0.

Figure 1 shows typical plots of the headway and veloc
against numbered carj for total car number 100, car densit
r50.2, safety distancexc55.0, a53.0, andb54.0. Figures
1~a! and 1~b! indicate the profiles of headway and velocit
respectively, after sufficiently long times. A stable dens
wave appears with the kink-antikink form. The density wa
has a symmetric form. The region with the short headw
and low velocity indicates the traffic jam. The region repr
sents the density wave. The density wave propagates b
ward ~from left to right! whereas cars move from right t
left.

Figure 2 shows the plot of maximal headwayDxmax and
minimal headwayDxmin against friction coefficienta for b
54.0 where densityr50.2, safety distancexc55.0, and the
total car number is 400. The headway out of the jam is nea
constant, but we choose the maximal value. Similarly,
headway within the jam is nearly constant, but we choose
minimal value. We calculate the maximal and minimal hea
ways when a density wave~traffic jam! occurs. The circular
points indicate the simulation results. For a special range

FIG. 1. Typical plots of the headway and velocity against nu
bered carj for total car number 100, car densityr50.2, safety
distancexc55.0, a53.0, andb54.0. ~a! and ~b! indicate the pro-
files of headway and velocity, respectively, after sufficiently lo
times. A stable density wave is observed with the kink-antiki
form. The density wave has a symmetric form. The density w
represents the traffic jam. The region with the short headway
low velocity indicates the traffic jam. The density wave propaga
backward~from left to right! whereas cars move from right to lef



a
o
ot
oe
is
av
co
2

or
a
ar
s
id
it
e
tin
st
a
th

c
i

s
in
ity
by

s
ry

n

tion
in-

and

line
ta-
e
the

he
ret

to
he
the

nd 3
and
er-

the
ty
s
he

of

p-

e
th
tin
nd
st
ea

st

ame
tral
ly
sting
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density, a jam appears. When a stable jam occurs, the m
mal and minimal headways give the same values for a c
stant value ofa. The maximal and minimal headways do n
depend on the density. However, for low density, a jam d
not occur. The limit of density in which no jam occurs
given by the inverse of the headway when no density w
appears. The boundary between the jam and no jam is
sistent with the solid curve on the right-hand side in Fig.
Also, the boundary between the jam phase and the unif
congested phase is given by the solid curve on the left-h
side in Fig. 2. In Fig. 2, region I above the phase bound
on the right-hand side indicates the freely moving pha
Region II above the phase boundary on the left-hand s
indicates the uniform congested traffic flow without a dens
wave. In region III inside both phase boundaries, the co
isting phase with a density wave appears. In the coexis
phase, the freely moving phase coexists with the conge
phase. In the coexisting phase, the typical profiles of he
way and velocity are shown in Fig. 1. Thus Fig. 2 shows
phase diagram representing the freely moving phase, the
existing phase, and the uniform congested phase. There
critical point, which is given byac54.0560.05 for b54.0.
When the friction coefficienta is larger thanac54.05, no
density wave appears. Fora.ac , the phase transition doe
not occur. The broken line indicates the neutral stability l
obtained by the linear stability theory. The linear stabil
analysis is given in Sec. IV. The critical point predicted
the linear stability theory is given byac54.0 forb54.0. The
value ac of the critical point obtained from simulation i
consistent with that predicted by the linear stability theo
within numerical accuracy.

Similarly, Fig. 3 shows the plot of maximal velocityvmax
~out of the jam! and minimal velocityvmin ~within the jam!
against the friction coefficienta for b54.0 ~for the same
parameters as in Fig. 2!. The circles indicate the simulatio

FIG. 2. Plot of maximal headwayDxmax and minimal headway
Dxmin against friction coefficienta for b54.0 where densityr
50.2, safety distancexc55.0, and the total car number is 400. Th
circular points indicate the simulation result. Also represented is
phase diagram indicating the freely moving phase, the coexis
phase, and the uniform congested phase. Regions I, II, and III i
cate, respectively, the freely moving phase, the uniform conge
phase, and the coexisting phase in which the density wave app
There is a critical point. It is given byac54.0560.05 for b54.0.
When the friction coefficienta is larger thanac54.05, the phase
transition does not occur. The broken line indicates the neutral
bility line obtained by the linear stability theory.
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result. The data points are obtained by the same simula
as in Fig. 2. Figure 3 also represents the phase diagram
dicating the freely moving phase, the coexisting phase,
the uniform congested phase. Above the critical pointac
54.05, the phase transition does not occur. The broken
indicates the neutral stability line obtained by the linear s
bility theory. Regions I, II, and III indicate, respectively, th
freely moving phase, the uniform congested phase, and
coexisting phase.

The following quantities define the order parameterS:

S5Dxf2Dxj or v f2v j , ~4!

whereDxf is the headway out of the jam,Dxj is the headway
within the jam,v f is the car velocity out of the jam, andv j is
the car velocity within the jam. The order parameterS is
different from zero below the critical pointac .

We discuss the similarity of the jamming transition to t
conventional liquid-gas phase transition. We can interp
the sensitivity parametera and headwayDx as temperature
and volume, respectively. Our order parameter is similar
that in the conventional liquid-gas phase transition. T
jammed phase and the freely moving phase correspond to
liquid phase and the gas phase, respectively. Figures 2 a
exhibit a phase diagram similar to the phase transition
critical phenomenon. The jamming transition has the prop
ties common to the liquid-gas phase transition.

Figure 4 shows plots of the maximal headway and
minimal headway forb52, 3, 4, 6, 8, and 100 where densi
r50.2, safety distancexc55.0, and the total car number i
400. Figure 5 shows plots of the maximal velocity and t
minimal velocity forb52, 3, 4, 6, 8, and 100~for the same
values as in Fig. 4!. With increasing delay time 1/b ~decreas-
ing b!, the critical point increases. Whenb<2.0, there is no
critical point. When delay time 1/b of the driving force is
larger than 0.5, the critical point disappears. In the case
b,2.0, the phase transition always occurs even ifa is suf-
ficiently large. It is interesting that the critical point disa
pears forb,2.0. In the limit b→` ~when the delay time

e
g
i-

ed
rs.

a-

FIG. 3. Plot of maximal velocityvmax ~out of the jam! and
minimal velocityvmin ~within the jam! against friction coefficienta
for b54.0 ~for the same parameters as in Fig. 2!. The circles indi-
cate the simulation result. The data points are obtained by the s
simulation result as in Fig. 2. The broken line indicates the neu
stability line. Regions I, II, and III indicate, respectively, the free
moving phase, the uniform congested phase, and the coexi
phase.
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approaches zero!, the phase boundary agrees with that o
tained by the original optimal velocity model.

Figure 6 shows a plot of the critical pointac againstb.
The circles indicate the simulation result. The solid cur
represents the critical points predicted by the linear stab
theory. Its curve is given byac52b/(b22). The simulation
result is consistent with the linear stability result. The critic
point diverges atb52.0.

We discuss the metastability of the jamming transition
our model. We made the density wave start from a cau
jam induced by the slowing down. The phase diagram
tween the sensitivity parametera and headwayDx was ob-
tained from the density wave. If we start from a uniform sta
and add a disturbance at a point to the uniform state,
density wave does not always appear even when the de
is between the phase separation line and the neutral sta
line. In the region between the phase separation line and
neutral stability line, the appearance of density waves~traffic
jams! depends strongly on the strength of the distrurban

FIG. 4. Plots of the maximal headway and the minimal headw
for b52, 3, 4, 6, 8, and 100 where densityr50.2, safety distance
xc55.0, and the total car number is 400.

FIG. 5. Plots of the maximal velocity and the minimal veloci
for b52, 3, 4, 6, 8, and 100~for the same parameters as in Fig. 4!.
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Its region corresponds to the region of the metastable st
II. The neutral stability line corresponds to the spinodal li
in the conventional phase transition. In the region of unsta
states between the neutral lines~broken lines! within the co-
existing phase, the density wave always appears when
same distrurbance is added to the uniform state~see Fig. 2!.
Indroducing the delay into the original optimal veloci
model, the region of the metastable states changes sig
cantly ~see Figs. 4 and 10!.

IV. LINEAR STABILITY THEORY

We apply the linear stability theory to our model. W
consider the stability of a uniform traffic flow. The uniform
traffic flow is defined by such a state that all cars move w
constant headwayh and optimal velocityV(h). The solution
xj ,0 of the uniform steady state is obtained by taki
d2xj /dt250 anddAj /dt50:

xj ,05h j1V~h!t with h5L/N, ~5!

whereAj ,05aV(h), N is the number of cars,L is the system
size, andh is the car spacing~identical headway!. Let yj and
wj be small deviations from the steady-state solutionsxj ,0
and Aj ,0 : xj5xj ,01yj and Aj5Aj ,01wj . Then the linear
equations are obtained

d2yj /dt25wj2adyj /dt,

dwj /dt5b@aV8~h!Dyj2wj #, ~6!

whereV8(h) is the derivative of optimal velocityV(Dx) at
Dx5h. By expanding yj5Y exp(ikj1zt) and wj
5W exp(ikj1zt), one obtains

S z21az
2abV8~h!~eik21!

21
z1bD S Y

WD50. ~7!

By the condition of nontrivial solutions, one obtains

z31~a1b!z21abz2abV8~h!~eik21!50. ~8!

y

FIG. 6. Plot of critical pointac againstb. The circles indicate
the simulation result. The solid curve represents the critical po
predicted by the linear stability theory. Its curve is given byac

52b/(b22). The simulation result is consistent with the line
stability result. The critical point diverges atb52.0.
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57 6419DELAY EFFECT ON PHASE TRANSITIONS IN . . .
By settingz150 ~z1 is the real part ofz!, the neutral stability
condition is obtained. At thek'0 mode, the uniform traffic
flow is unstable for

V8~h!.a/2, ~9!

where 1/a51/a11/b.
Hereafter, we calla the effective sensitivity. Equation~9!

tells us that the stability condition for effective sensitivitya
is given by 2V8(h), as in the original optimal velocity
model. In the limitb→`, Eq.~9! reduces to that obtained b
the optimal velocity model. SinceV8(h) has a maximal
value 1 ath5xc , a uniform traffic flow is always stable i
the following condition is satisfied:

a.2b/~b22! for b.2.0. ~10!

When a small disturbance is added to the uniform flow~with
a constant headway and the optimal velocity! satisfying the
above condition, its uniform flow is always stable. We fi
that there is a critical pointac for b.2.0. The critical point is
given by

ac52b/~b22! for b.2.0. ~11!

If b<2.0, there is no critical point and the uniform traffi
flow is always unstable. The neutral stability condition
given byV8(h)5ab/@2(a1b)#. Figure 7 shows the neutra
stability lines in the (Dx,a) plane forb52.0, 3.0, 4.0, 6.0,
8.0, and 100. With increasing delay time 1/b, the critical
point increases. Whenb<2.0, there is no critical point. Fo
comparison with the simulation result, the neutral stabi
lines are shown by the broken lines in Figs. 2 and 3. T
dependence of critical point uponb is shown by the solid
line in Fig. 6. The critical point predicted by Eq.~11! agrees
with the simulation result. For later convenience, let us
rive the long-wavelength expansion ofz in the vicinity of the
neutral stability curve, which is determined order by ord
aroundik;0:

FIG. 7. Neutral stability curves in the (Dx,a) plane for b
52.0, 3.0, 4.0, 6.0, 8.0, and 100.
e

-

r

z~ ik !5 iV8k1
ac2a

4
k22 i

V8

6 S 12
6V82

ab D k3

2
V8

8 S 12
8V82

ab D k4, ~12!

whereac52.

V. NONLINEAR ANALYSIS

We derive the weakly nonlinear wave equation of the ja
formation, using the reductive perturbation method. W
eliminate the driving forceA from Eqs.~1! and ~2! and ob-
tain the third-order differential equation forxj ,

] t
3xj1~a1b!] t

2xj1ab] txj5abV~Dxj !. ~13!

To consider the deviation from the uniform flow with hea
way h, we definer (x,t)5Dxj (t)2h, wherex5 jh:

@] t
31~a1b!] t

21ab] t#r ~x,t !5ab@V„h1r ~x1h,t !…

2V„h1r ~x,t !…#

5ab~eh]x21!

3V„h1r ~x,t !…. ~14!

We collect the linear terms forr on the left-hand side as

@] t
31~a1b!] t

21ab] t2abV8~h!~eh]x21!#r

5ab~eh]x21!N@r #, ~15!

where

N@r #5 (
n52

`
V~n!~h!

n!
r n. ~16!

Here V(n)(h) denotes thenth derivative of the optimal ve-
locity at headwayh.

The differential operator on the left-hand side of Eq.~15!
can be factorized as (] t2z)(] t2z1)(] t2z2), wherez’s sat-
isfy

z1z11z252~a1b!, ~z11z2!z1z1z25ab. ~17!

z(]x) is given by Eq.~12!, whereik is substituted byh]x and
z1 ,z2 correspond to irrelevant decaying modes, whose r
parts are negative. Then we can replace the differential
erator with (] t2z)(] t2z1)(] t2z2) and rewrite the last two
factors of it by using Eq.~17! as

~z2z1!~z2z2!53z212~a1b!z1ab

5ab~112z/a13z2/ab!. ~18!

Thus we obtain the weakly nonlinear long-wavelength eq
tion

~] t2z!r 5~112z/a13z2/ab!21N@r #. ~19!

By numerical analysis, we already know that the critic
point for the jam formation is ata5ac52 and h5xc ,
wherexc is determined by the turning pointV9(xc)50 of the
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6420 57TAKASHI NAGATANI AND KEN NAKANISHI
optimal velocity function, which corresponds to the top
the neutral stability curve. Then we will investigate Eq.~19!
around the critical point by taking«25(ac2a)/ac . When
we make the scaling ansatz

r ~x,t !52«A V8

uV-u
R~y,t!,

y52«S x

h
1V8t D ,

t5 4
3 «3V8t, ~20!

we obtain the regularized equation

]tR2 f ]y
3R1]yR

352«M @R#, ~21!

where

M @R#5 3
2 @]y

2R1g]y
4R2 2

3 ]y
2R3#, ~22!

f 5126V82/ab, andg5128V82/ab. Note that hereinafter
all derivatives of the optimal velocity are evaluated ath
5xc . It also should be noted thatf andg are always positive
for any a andb.

Let us find the propagating solution of Eq.~21! with con-
stant velocityc by settingR5R(y2ct). First, we ignore the
O(«) terms in Eq.~21! and get the MKdV equation, which
has the kink solution

R0~y!5Ac tanhA c

2 f
y. ~23!

Next, assumingR5R01«R1 , we take into account the
O(«) correction and get forR1

LR15M @R0#, ~24!

where

L5c]y1 f ]y
323R0

2]y23]yR0
2. ~25!

To determine the selected value of the propagation velocic
for the kink solution~23!, we consider the solvability condi
tion for Eq. ~24!,

~F0 ,M @R0# ![E
2`

1`

dy F0M @R0#50, ~26!

whereF0 is the zeroth eigenfunction of the adjoint opera
L†,

L†F050, L†52c]y2 f ]y
313R0

2]y . ~27!

Fortunately, we find that the zeroth-order solutionR0 itself
satisfies Eq.~27! and we can chooseF05R0 . Performing
the integration, we obtain the selected velocity

c55 f /2~ f 1g!. ~28!

When b→`, f and g go to unity and we getc5 5
4 , which

agrees with the result obtained by Komatsu and Sasa@31#.
f

r

If we adopt the explicit form~3! of the optimal velocity,
the amplitude~A! of the kink solution is given by

A5«A 5 f

2~ f 1g!
5A5S a1b

ab
2

1

2D ab26

ab27
. ~29!

We show the result forb54 and 8 in Fig. 8. The full circles
and triangles indicate data points of simulation forb54 and
8, respectively. The phase separation curves obtained
lytically are indicated by the solid curves. The analytic
result is in good agreement with the numerical simulat
near the critical point.

VI. SUMMARY

We proposed the traffic flow model to describe the sp
taneous traffic jam occurring on a highway. We extended
optimal velocity model to take into account the delay effe
of the driving force. We investigated the jamming transiti
among the freely moving phase, the coexisting phase,
the uniform congested phase. We obtained the phase diag
for the phase transition and critical phenomenon. We show
that the delay of the driving force has an important effe
upon the jamming transition. We found that there is no cr
cal point when the delay time 1/b is longer than1

2 .
We applied the linear stability theory to our model. W

showed that the critical point can be predicted by the lin
stability theory. We derived the MKdV equation to descri
the traffic jam near the critical point, using the nonline
analysis. It was shown that the phase separation curve
dicted by the nonlinear wave equation is consistent with t
obtained by the simulation.

We showed that there is a similarity between our jamm
transition and the liquid-gas phase transition when sensiti
a and headwayDx correspond to the temperature and vo
ume, respectively. Also, we discussed the similarity of t
metastability to the spinodal decomposition. In order to d
scribe more accurately the jamming transition in terms of
phase transition and critical phenomenon, it will be nec
sary to derive the time-dependent Ginzburg-Landau equa
from the optimal velocity model.

FIG. 8. Phase separation curves obtained by the nonlinear an
sis forb54 and 8. The curves obtained from Eq.~29! are indicated
by solid lines. The simulation data forb54 and 8 are plotted by full
circles and triangles.
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