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Delay effect on phase transitions in traffic dynamics
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A dynamical model of traffic is proposed to take into account the effect of acceleration delay. In the limit of
no delay, the model reproduces the optimal velocity model of traffic. When the delay is small, it is shown that
the phase transition among the freely moving phase, the coexisting phase, and the uniform congested phase
occurs below the critical point. Above the critical point, no phase transition occurs. Theagadti¢he critical
point increases with increasing delay timé,Jivherea is the friction coefficientor sensitivity parametgr
When the delay time is longer thén the critical point disappears and the phase transition always occurs. The
linear stability theory and nonlinear analysis are applied. The critical point predicted by the linear stability
theory agrees with the simulation result. The modified Korteweg—de \Kid¥) equation is obtained from the
nonlinear analysis near the critical point. The phase separation line obtained from the modified KdV equation
is consistent with the simulation resyl§1063-651X98)03706-4

PACS numbsg(s): 05.70.Fh, 05.70.Jk, 89.46k

[. INTRODUCTION Very recently, Nagatani presented the power-law model
to describe the traffic jam82]. The power-law model is an

Recently, traffic problems have attracted considerable atextended version of the optimal velocity model. It was
tention[1]. Knowing the properties of a traffic jam is impor- shown that the phase transition and critical behaviors depend
tant in our life. Traffic jams are classified into two types: onestrongly on the power. The phase transition and critical be-
is the spontaneous jam and the other is the causal jam. Aavior are definitely different from the other models. It was
causal jam is induced by such hindrances as car accidentgund that the scaling exponents are different from those of
tunnels, and slopes. A spontaneous jam appears in congeste@ optimal velocity model. The power-law model of traffic
traffic without the hindrances. Traffic jams have been StUdie(ﬂ_)e|0ngs to the different universality class from the optimal
by several traffic models: car following mod¢&-5|, cellu- velocity and hydrodynamic models.
lar automaton modelf6-19], gas kinetic model$20-23, Generally, when a driver accelerates one’s car, a delay

and hydrodynamic mode(26,27. occurs due to the car performance or driver's adjustment.

The transition between the spontaneous jam and freelyyq jejay may have an important effect upon the property of
moving traffic has been investigated by several researchergagic fiow. In particular, we are interested in the effect of

{:I)ﬁaesoin?nigre]{ izl:etr;]l;e[t?;:;ggnprtgp?;’:dsgéi t(;en”eu(ii; il;h]delay upon the jamming transition. There is an open question
Kerner and Konhausef26] have presented the hydrody- whether or not the delay affects effectively the traffic flow.

namic model. Bandet al. [2] have proposed the optimal . In this paper we present a dynar_nical trafiic model to _take
velocity model of traffic as an extended version of the CalJnto account the effect of acceleration delay. We investigate

following models. In these models, jamming transitions be_the effect of delay upon the phase transition and critical phe-

tween the freely moving phase and the jammed phase haf¥?menon by using cpmputer sirT_luIation, the linear stability
been found. Furthermore, it has been shown that there exist@®0ry, and the nonlinear analysis. We show that the phase
a hysteresis near the transition point in the fundamental digfansition depends largely on the delay time of acceleration.
gram. Recently, Krauss, Wagner, and Gawfas] have \We calculate the neutral stability line and the critical point
found that there is a metastable region near the transitiofom the linear stability theory. We derive the MKdV equa-
point in the Gipps model. It is known that the hysteresistion for describing the traffic jam. We compare the simula-
phenomenon is due to the metastability. Barosial. [29]  tion result with the analytical result. We show the similarity
have showed that the metastability occurs in an extendebetween the jamming transition and the conventional liquid-
version of the Nagel-Schreckenberg model. Kurtze and Hongas phase transition. We discuss the similarity between the
[30] have derived the Korteweg—de Vries equation from themetastability and the spinodal decomposition.

fluid dynamic traffic model to describe the traffic jam. Ko-  The organization of the paper is as follows. In Sec. Il we
matsu and Sag&1] have derived the modified Korteweg—de propose a dynamic traffic model taking into account the de-
Vries (MKdV) equation from the optimal velocity model to lay. In Sec. Il we give the simulation result. The dependence
describe the kink-antikink density way&affic jam). It has  of the critical point on the delay time is shown. The phase
been found that there is a critical point in the hydrodynamicseparation line is calculated and its dependence on the delay
and optimal velocity models. The phase transition occurs betime is shown. In Sec. IV the stability of uniform traffic flow
low the critical point. Near the critical point, the character-is analyzed by the linear stability theory. The neutral stability

istic length and time scale asd—a) Y? and @.,—a) %2 line and critical point are obtained. In Sec. V we apply the
The scaling exponents in the optimal velocity model are connonlinear analysis to the traffic flow near the critical point.
sistent with those in the fluid dynamic model. We derive the MKdV equation for the traffic jam. The phase
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separation line is calculated by the nonlinear wave equation. AX
Section VI give a summary.
6.0 a=3.0, b=4.0
. DYNAMIC MODEL ., A' [E———
We propose a dynamical traffic flow model. The model is e
an extended version of the optimal velocity model proposed 401
by Bandoet al.[2]. A driving force acts on the car to accel- ' ; '
erate it. Simultaneously, a friction force acts on the car. We l 25 j 50 s 100
assume that the driving force depends on the headway and (a)
time. The equation of motion of cgris
2 2_
0% [AE=ACAX;, 1) —adx fdt, @ 20 a=3.0,b=4.0 .
where; is the position of cafj, Ax; (=Xj_1—X;) is the 10;
headway, ana is the friction coefficient. A(Ax;,t) repre- "' A
sents the driving force to accelerate ¢arThe second term r———— '
on the right-hand side represents the friction force. We as- 0~01 2'5 ' 7'5 100
sume that the car velocity becomes the optimal velocity j >0
V(Ax;) in the steady state with no jam. The driving force (b)

approaches taV(Ax;) after sufficiently large times. We call

a\./(.AXi) the optimal driving force It is a;sumed that the FIG. 1. Typical plots of the headway and velocity against num-
driving force approacheaV(Ax;) with a first-order delay pered carj for total car number 100, car densipy=0.2, safety
1/b. Then the equation of the driving force is distancex.=5.0,a= 3.0, andb=4.0. (a) and (b) indicate the pro-
files of headway and velocity, respectively, after sufficiently long
dA/dt= b{aV(AXJ)_A}’ v times. A stable density wave is observed with the kink-antikink
form. The density wave has a symmetric form. The density wave
represents the traffic jam. The region with the short headway and
V(AX]-) :tanI‘(AX]- —xo)+tanhx, 3) low velocity indicates the traffic jam. The density wave propagates
backward(from left to right) whereas cars move from right to left.

wherex, is the safety distance andulfepresents the delay _ _ _ o

time. V(Ax;) represents the optimal velocity. The optimal Stant propagation velocity, . Once the single jam is formed
velocity function(3) is consistent with that of Bandet al. ~ for @ special range of density, the jam is stable and does not
[2]. If a jam does not occur, the car velocity becomes thé?reak up. The jam has the symmetric form of the kink-
optimal velocityV(Ax;) in the steady state. In the limit of antikink density wave. The stable jam occurs at an interme-
b—c, our model described by Eq&l)—(3) reproduces the diate density. For low _den5|ty, a Jam_dlsappeafs in time and
original optimal velocity model proposed by Banaval. &l cars move freely with nearly maximal velocity. For high -
[2]. This limit corresponds to the case of no delay when glensity, a jam also disappears in time and a congested uni-
driver accelerates one’s car. In the optimal velocity modelform traffic flow occurs. Thus we can make a stable jam on
the friction coefficienta is called the sensitivity. With de- the one-dimensional space for special values of density. We
creasingb, the delay time 1 increases. Then it takes more f[ake the number of cars to be 100—-400. The safety distance
time for the driving force to approach the optimal driving 'S S€t t0Xc=5.0. . _
force. In this model the maximal and minimal velocities are ~ Figure 1 shows typical plots of the headway and velocity
two and zero, respectively. The optimal velocity increasefdainst numbered cgrfor total car number 100, car density
monotonically from the minimal velocity to the maximal ve- ¢ =0.2, safety distance.=5.0,a=3.0, ando=4.0. Figures
locity with increasing headwagix; . By introducing the de- 1(@ and 1b) indicate the profiles of headway and velocity,
lay, it is expected that the traffic flow changes effectively'esSpectively, after sufficiently long times. A stable density
with the delay. In the following sections, we investigate thewave appears with the kink-antikink form. The density wave

traffic properties of the model described by EG9—(3). has a symme_tric. fo_rm. The regior] vyith the shor'; headway
and low velocity indicates the traffic jam. The region repre-

sents the density wave. The density wave propagates back-
ward (from left to right whereas cars move from right to
We study the phase transition in the model described byeft.
Egs. (1)—(3). We perform a numerical simulation for the  Figure 2 shows the plot of maximal headwAx,,,, and
model. Initially, cars are randomly distributed on the one-minimal headwayAx,,, against friction coefficiena for b
dimensional space with car densjiyand initial velocityv. =4.0 where density=0.2, safety distance.=5.0, and the
The boundary is periodic. In order to form a single jam, atotal car number is 400. The headway out of the jam is nearly
hindrance is put at a point on the one-dimensional space. Weonstant, but we choose the maximal value. Similarly, the
assume that when a car reaches the hindrance it slows dovieadway within the jam is nearly constant, but we choose the
instantly to low velocityv,. In time, a single jam is formed minimal value. We calculate the maximal and minimal head-
just behind the hindrance. After the jam is formed, the hin-ways when a density waugraffic jam) occurs. The circular
drance is removed. The jam propagates backward with corpoints indicate the simulation results. For a special range of

with

I1l. SIMULATION AND RESULT
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FIG. 2. Plot of maximal headwast x5 and minimal headway FIG. 3. Plot of maximal velocity na (out of the jam and

Ax., against friction coefficiena for b=4.0 where densityp minimal velocityv i, (within the jam agai_nst friction coefficiena
=0.2, safety distance,=5.0, and the total car number is 400. The for b=4.0 (for the same parameters as in Fig. Zhe circles indi-
circular points indicate the simulation result. Also represented is th&at€ the simulation result. The data points are obtained by the same
phase diagram indicating the freely moving phase, the coexistinﬁ'mm_at'o_” result as in Fig. 2. The_ brc_)ken line indic_:ates the neutral
phase, and the uniform congested phase. Regions 1, 11, and IIl indistab!llty line. Regions I,_ II, and Ill indicate, respectively, the fre(_aly_
cate, respectively, the freely moving phase, the uniform congeste@©Ving phase, the uniform congested phase, and the coexisting
phase, and the coexisting phase in which the density wave appea@?ase-
There is a critical point. It is given bg.=4.05+0.05 forb=4.0.
When the friction coefficient is larger thana,=4.05, the phase result. The data points are obtained by the same simulation
transition does not occur. The broken line indicates the neutral stadS in Fig. 2. Figure 3 also represents the phase diagram in-
bility line obtained by the linear stability theory. dicating the freely moving phase, the coexisting phase, and
the uniform congested phase. Above the critical paipt
density, a jam appears. When a stable jam occurs, the maxi=4.05, the phase transition does not occur. The broken line
mal and minimal headways give the same values for a conindicates the neutral stability line obtained by the linear sta-
stant value of. The maximal and minimal headways do not bility theory. Regions |, 1l, and Il indicate, respectively, the
depend on the density. However, for low density, a jam doefreely moving phase, the uniform congested phase, and the
not occur. The limit of density in which no jam occurs is coexisting phase.
given by the inverse of the headway when no density wave The following quantities define the order parameser
appears. The boundary between the jam and no jam is con-
sistent with the solid curve on the right-hand side in Fig. 2. S=Ax;—Ax; or vi—vj, (4)
Also, the boundary between the jam phase and the uniform
congested phase is given by the solid curve on the left-handhereAx; is the headway out of the jam; is the headway
side in Fig. 2. In Fig. 2, region | above the phase boundaryvithin the jam,v; is the car velocity out of the jam, ang is
on the right-hand side indicates the freely moving phasethe car velocity within the jam. The order paramegeis
Region Il above the phase boundary on the left-hand siddifferent from zero below the critical poirat; .
indicates the uniform congested traffic flow without a density We discuss the similarity of the jamming transition to the
wave. In region lll inside both phase boundaries, the coexeonventional liquid-gas phase transition. We can interpret
isting phase with a density wave appears. In the coexistintghe sensitivity parametex and headwayAx as temperature
phase, the freely moving phase coexists with the congestezhd volume, respectively. Our order parameter is similar to
phase. In the coexisting phase, the typical profiles of headthat in the conventional liquid-gas phase transition. The
way and velocity are shown in Fig. 1. Thus Fig. 2 shows thgammed phase and the freely moving phase correspond to the
phase diagram representing the freely moving phase, the céguid phase and the gas phase, respectively. Figures 2 and 3
existing phase, and the uniform congested phase. There isexhibit a phase diagram similar to the phase transition and
critical point, which is given bya.=4.05+0.05 forb=4.0.  critical phenomenon. The jamming transition has the proper-
When the friction coefficieng is larger thana,=4.05, no ties common to the liquid-gas phase transition.
density wave appears. Fai>a., the phase transition does  Figure 4 shows plots of the maximal headway and the
not occur. The broken line indicates the neutral stability lineminimal headway fob=2, 3, 4, 6, 8, and 100 where density
obtained by the linear stability theory. The linear stability p=0.2, safety distancg.=5.0, and the total car number is
analysis is given in Sec. IV. The critical point predicted by 400. Figure 5 shows plots of the maximal velocity and the
the linear stability theory is given ky.=4.0 forb=4.0. The = minimal velocity forb=2, 3, 4, 6, 8, and 10(for the same
value a. of the critical point obtained from simulation is values as in Fig. ¥ With increasing delay time t/(decreas-
consistent with that predicted by the linear stability theorying b), the critical point increases. Whdr=2.0, there is no
within numerical accuracy. critical point. When delay time I/ of the driving force is
Similarly, Fig. 3 shows the plot of maximal velocity,,,, ~ larger than 0.5, the critical point disappears. In the case of
(out of the jam and minimal velocityv i, (within the jam)  b<2.0, the phase transition always occurs evea i§ suf-
against the friction coefficiena for b=4.0 (for the same ficiently large. It is interesting that the critical point disap-
parameters as in Fig)2The circles indicate the simulation pears forb<<2.0. In the limitb—c (when the delay time
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FIG. 6. Plot of critical pointa. againstb. The circles indicate

the simulation result. The solid curve represents the critical points
predicted by the linear stability theory. Its curve is given &y
=2b/(b—2). The simulation result is consistent with the linear

FIG. 4. Plots of the maximal headway and the minimal headway>t@Pility result. The critical point diverges ft=2.0.
for b=2, 3, 4, 6, 8, and 100 where densjiy- 0.2, safety distance . )
x.=5.0, and the total car number is 400. Its region corresponds to the region of the metastable states

Il. The neutral stability line corresponds to the spinodal line
approaches zeypthe phase boundary agrees with that ob-in the conventional phase transition. In the region of unstable
tained by the original optimal velocity model. states between the neutral lingsoken line$ within the co-

Figure 6 shows a plot of the critical poiat, againstb.  €Xisting phase, the density wave always appears when the
The circles indicate the simulation result. The solid curvesame distrurbance is added to the uniform staée Fig. 2
represents the critical points predicted by the linear stabilityndroducing the delay into the original optimal velocity
theory. Its curve is given bg.=2b/(b—2). The simulation ~model, the region of the metastable states changes signifi-
result is consistent with the linear stability result. The criticalcantly (see Figs. 4 and 10
point diverges ab=2.0.

We discuss the metastability of the jamming transition in
our model. We made the density wave start from a causal ) .
jam induced by the slowing down. The phase diagram be- We apply the linear stability theory to our model. We
tween the sensitivity parametarand headway\x was ob- con§|der th.e sta_blhty of a uniform traffic flow. The unlform
tained from the density wave. If we start from a uniform statetraffic flow is defined by such a state that all cars move with
and add a disturbance at a point to the uniform state, thgonstant headwaly and optimal velocity/(h). The solution
density wave does not always appear even when the densityo Of the uniform steady state is obtained by taking
is between the phase separation line and the neutral stability’x; /dt?=0 anddA, /dt=0:
line. In the region between the phase separation line and the

IV. LINEAR STABILITY THEORY

neutral stability line, the appearance of density watesfic Xjo=hj+V(h)t with h=L/N, (5)
jamg depends strongly on the strength of the distrurbance.
whereA; ;=aV(h), N is the number of carg, is the system
7.0

size, andh is the car spacingdentical headway Lety; and

i! b=3 b=2\‘i w; be small deviations from the steady-state solutizpg
6.0 i /‘\\ ° and Ajo: Xj=Xj oty andA;=A, o+w;. Then the linear
7 // \ i equations are obtained
50—
7’ /./ bed \, !i d?y;/dt?=w;—ady;/dt,
40 ¢ # °
2 |17 TN\

sol 17 b8 N

° A/ b=8 A\A O A
2.0 L e N

L dw, /dt=b[aV’(h)Ay,—w;], (6)

whereV'(h) is the derivative of optimal velocity/(Ax) at

b Ax=h. By expanding y;=Y exp(kj+zt) and w;
%///"/O/bﬂoo \k“\% =W exp(kj+zt), one obtains
1.0
% Z’+az -1\/Y\
0.0 ! I ! —abV/(hy(e%—1) z+b)lw/=0 @)
0.0 0.5 v 1.0 1.5 2.0

By the condition of nontrivial solutions, one obtains
FIG. 5. Plots of the maximal velocity and the minimal velocity

for b=2, 3, 4, 6, 8, and 10(for the same parameters as in Fig. 4 22+ (a+b)Z?+abz—abV (h)(e*—1)=0. (8
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FIG. 7. Neutral stability curves in theAi,a) plane for b
=2.0, 3.0, 4.0, 6.0, 8.0, and 100.

By settingz,;= 0 (z; is the real part of), the neutral stability
condition is obtained. At th&~0 mode, the uniform traffic
flow is unstable for

V'(h)>al2, 9
where 1&=1/a+ 1/b.

Hereafter, we calk the effective sensitivity. Equatiof9)
tells us that the stability condition for effective sensitivity
is given by 2/'(h), as in the original optimal velocity
model. In the limitb— o, Eq.(9) reduces to that obtained by
the optimal velocity model. Sinc&’(h) has a maximal
value 1 ath=x., a uniform traffic flow is always stable if
the following condition is satisfied:

a>2b/(b—2) for b>2.0. (10
When a small disturbance is added to the uniform flaith
a constant headway and the optimal velocistisfying the
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Ho=iviks % e V8V

2k =Vt == k- g |17y
\& 8Vv’'? 4 12
ERRrTYAE (12

where .= 2.

V. NONLINEAR ANALYSIS

We derive the weakly nonlinear wave equation of the jam
formation, using the reductive perturbation method. We
eliminate the driving forcé\ from Eqgs.(1) and(2) and ob-
tain the third-order differential equation fag,

Iex; + (a+b)ax; +abax;=abV(Ax;). (13)

To consider the deviation from the uniform flow with head-
way h, we definer (x,t) = Ax;(t) —h, wherex=jh:

[33+ (a+b)d?+abar(x,t)=ab[V(h+r(x+h,t))
—V(h+r(x,t))]
=ab(e"x—1)
XV(h+r(x,t)). (14
We collect the linear terms far on the left-hand side as

[33+ (a+Db)d2+abd,—abV' (h)(e"x—1)]r

=ab(e"x—1)N[r], (15
where
* (n)
N[r]= S, I(h) . (16)
n=2 n:

Here V(W(h) denotes thenth derivative of the optimal ve-
locity at headwayh.

The differential operator on the left-hand side of Etp)
can be factorized asi)(—z)(d;—z1) (d;—2), wherez's sat-

above condition, its uniform flow is always stable. We find isfy

that there is a critical poird, for b>2.0. The critical point is
given by
a.=2b/(b—-2)

for b>2.0. (11

z+z,+2z,=—(a+bh), (17
z(4dy) is given by Eq(12), whereik is substituted by, and
Z,,Z, correspond to irrelevant decaying modes, whose real
parts are negative. Then we can replace the differential op-

(z4+2,)z+2z,2,=ab.

If b<2.0, there is no critical point and the uniform traffic erator with @,—z)(9,—z;)(d,—z,) and rewrite the last two
flow is always unstable. The neutral stability condition isfactors of it by using Eq(17) as

given byV’(h)=ab/[2(a+b)]. Figure 7 shows the neutral
stability lines in the Ax,a) plane forb=2.0, 3.0, 4.0, 6.0,
8.0, and 100. With increasing delay timebl/the critical

point increases. Wheb=<2.0, there is no critical point. For

(z—21)(z—2,)=3Z2+2(a+b)z+ab

=ab(1+2z/a+37%/ab). (18

comparison with the simulation result, the neutral stability-n1us we obtain the weakly nonlinear long-wavelength equa-
lines are shown by the broken lines in Figs. 2 and 3. Thg;,,

dependence of critical point updm is shown by the solid
line in Fig. 6. The critical point predicted by E¢L1) agrees
with the simulation result. For later convenience, let us de-
rive the long-wavelength expansionoin the vicinity of the By numerical analysis, we already know that the critical
neutral stability curve, which is determined order by orderpoint for the jam formation is ak=«a.=2 and h=xc,
aroundik~0: wherex. is determined by the turning poilt’(x.) =0 of the

(6y—2)r = (1422 a+3z%/ab) " IN[r]. (19
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optimal velocity function, which corresponds to the top of
the neutral stability curve. Then we will investigate Et9)
around the critical point by taking?= (a.— a)/a.. When
we make the scaling ansatz

t)=2 —V, R )
r(x,t)=2e1/
(X, € |VW| (y,7),

X
y=2¢ H"FV,t ,
r=%e3V'1, (20)
we obtain the regularized equation
J,R— IR+ R®= —eM[R], (22)
where
M[R]=3[9;R+gdyR— 3R], (22)

f=1-6V'%ab, andg=1—8V’'%ab. Note that hereinafter
all derivatives of the optimal velocity are evaluated hat
=X, . It also should be noted thatandg are always positive
for anya andb.

Let us find the propagating solution of EQ1) with con-
stant velocityc by settingR=R(y—c). First, we ignore the
O(e) terms in Eq.(21) and get the MKdV equation, which
has the kink solution

C
Ro(y)=+c tanh \/ > .

Next, assumingR=R,+&eR;, we take into account the
O(e) correction and get foR;

(23

LR;=M[Rg], (24

where

L=cdy+ fd;—3R50y— 3d,R3. (25)
To determine the selected value of the propagation velacity
for the kink solution(23), we consider the solvability condi-
tion for Eq. (24),

(@ MIRD= | dy doMIRI=0, (20

where®dg is the zeroth eigenfunction of the adjoint operator
LT’

LTdo=0, L'=-ca,—fd3+3R5d,. (27)
Fortunately, we find that the zeroth-order solutigg itself

satisfies Eq(27) and we can choos®,=R,. Performing
the integration, we obtain the selected velocity

c=5f/2(f+g). (29)

Whenb—o, f andg go to unity and we get=2, which

agrees with the result obtained by Komatsu and $ash
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FIG. 8. Phase separation curves obtained by the nonlinear analy-
sis forb=4 and 8. The curves obtained from Eg9) are indicated
by solid lines. The simulation data for=4 and 8 are plotted by full
circles and triangles.

If we adopt the explicit form(3) of the optimal velocity,
the amplitude(.A) of the kink solution is given by

P

We show the result fob=4 and 8 in Fig. 8. The full circles
and triangles indicate data points of simulation lfer 4 and

8, respectively. The phase separation curves obtained ana-
lytically are indicated by the solid curves. The analytical
result is in good agreement with the numerical simulation
near the critical point.

5F
2(f+g)

ab—6
ab—7"

at+b 1
ab 2

(29

VI. SUMMARY

We proposed the traffic flow model to describe the spon-
taneous traffic jam occurring on a highway. We extended the
optimal velocity model to take into account the delay effect
of the driving force. We investigated the jamming transition
among the freely moving phase, the coexisting phase, and
the uniform congested phase. We obtained the phase diagram
for the phase transition and critical phenomenon. We showed
that the delay of the driving force has an important effect
upon the jamming transition. We found that there is no criti-
cal point when the delay time ld/is longer than;.

We applied the linear stability theory to our model. We
showed that the critical point can be predicted by the linear
stability theory. We derived the MKdV equation to describe
the traffic jam near the critical point, using the nonlinear
analysis. It was shown that the phase separation curve pre-
dicted by the nonlinear wave equation is consistent with that
obtained by the simulation.

We showed that there is a similarity between our jamming
transition and the liquid-gas phase transition when sensitivity
a and headway\x correspond to the temperature and vol-
ume, respectively. Also, we discussed the similarity of the
metastability to the spinodal decomposition. In order to de-
scribe more accurately the jamming transition in terms of the
phase transition and critical phenomenon, it will be neces-
sary to derive the time-dependent Ginzburg-Landau equation
from the optimal velocity model.
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