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From ballistic deposition to the Kardar-Parisi-Zhang equation through a limiting procedure
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We show a direct connection between the ballistic deposition and the Kardar-Parisi{&Rifigequation.
We derive the KPZ equation from the ballistic deposition models, using an important limiting procedure. The
cellular automaton rule is transformed into an integrable difference-difference equation through the limiting
procedure. By applying the perturbation method to the difference-difference equation, the difference-difference
equation is reduced to the KPZ equation through the Burgers equation. We apply the procedure to several types
of ballistic deposition model§S1063-651X98)00307-9

PACS numbses): 81.15-z, 02.10.Jf, 68.35:p

[. INTRODUCTION where mak] is the maximum function. We consider the
difference of heights between nearest neighbors:
Deposition of particles on surfaces is a phenomenon of

scientific interest with a broad range of practical applica- h(i,t+1)—h(i—1t+1)
tions. The scaling properties of surface roughness have been _ . . .
investigated by means of both numerical and analytical tools =ma{h(i=10),h(i,H+1h(i+10)]
[1-22. The surface roughness problem belongs to the active —max{h(i—2t),h(i—1t)+1h(i,t)]. (2
field of nonequilibrium statistical physics and irreversible
growth phenomena. The ballistic deposition model is theNext we take an important step using the limiting procedure,
most basic and simplest one of irreversible growth modelsvhich is the key to making a transformation from a cellular
[1-3]. It is now generally believed that the ballistic deposi- automaton to a difference-difference equation. The identity
tion model is the discrete version of the continuous modefor the limiting procedure is given by
introduced by Kardar, Parisi, and Zhaf@f]. The continu-
ous model is described by the nonlinear partial differential ma{A,B,C]= lim zIn(e"*+e®*+e%), (3
equation called the Kardar-Parisi-ZharigPZ) equation. e—0"
However, one cannot formally derive the KPZ equation. One

- . . __Where ¢ is a positive infinitesmal value. By applying the
can develop a set of plausibility arguments using physwaYV ) i
principles, which motivate the addition of a nonlinear term to'dentlty (3) to Eq.(2) we obtain

the linear Edward-Wilkinson equatio21]. The nonlinear h(i,t+1)—h(i—1t+1)
term represents the lateral growth when a new particle is ’ ’_ _ _
added to the surface. Until now, there seemed to be no direct [ehli—10/e 4 glh(D+1)/e 4 gh(i+10/e]
and formal derivation of the KPZ equation from the ballistic = lim eln —— . 7
I (i—20)/e | alh(i—10)+1)/e 4 Sh(i /e
deposition model. T te +e ]
Recently, Tokihiroet al. [23] proposed such an ultradis- (4

cretization method in which the Korteweg—de Vries equation

is transformed to a cellular automaton. They showed a direaBy replacing el"("0=(=10Vs by ¢(j,t), we obtain the
connection between a cellular automaton and integrable notifference-difference equation

linear wave equations. In this paper we show a direct and

formal derivation of the KPZ equation from the ballistic  c(i,t+1)=[éc(i—1t)+c(i—1t)c(i,t)

deposition models. +8c(i— 10 c(i, He(i+ 1,0 8+c(i—11)

. . _1
II. LIMITING PROCEDURE +oci—1he(n] ®

- . . . Y.
The ballistic deposition model for a two-dimensional Wheres=e" .

square lattice can be described as follows. At timehe

height of the interface of siteis h(i,t). We choose a ran- Ill. PERTURBATION METHOD
dom position above the surface and allow a particle to fall
vertically toward it. The particle sticks to the first site along \ .
its trajectory that has an occupied nearest neighbor. Figure 17f@ce on coarse-grained scales. The simplest way to de-

shows the schematic representation of the ballistic depositioﬁcribfa the hydrodynamic mode _is the long-wavelength ex-
model. At timet+1, the heighth(i,t+1) is given by pansion. We apply the perturbation method to Exj.[24].
' ' We wish to extract slow scales for the space variabdad

time variablet. For |[Ax|<1, we therefore define the slow
h(i,t+1)=ma{h(i—11),h(i,t)+Lh(i+1t)], (1) variablesX andT,

We now consider the hydrodynamic mode in the rough
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FIG. 1. Schematic representation of the ballistic deposition
model. A particle falls vertically. The particle sticks to the first site

along its trajectory that has an occupied nearest neighbor.

X=(Ax)i, T=8(Ax)%. (6)

By setting Inc(i,t)=(Ax)v(Axi, 5(Ax)?t)=(Ax)v(X,T), we
expandc(i,t) to order Ax)3. We obtain

c(i,t)=exg (AX)v(X,T)]=1+(AX)v +(AX)%v?/2
+(AX)%0%6+- -+, (7

wherev=v(X,T) in the second equality. We exparni
—1t) to order Ax)®. We obtain

c(i—1t)=1+(Ax)v(Ax(i—1),8(Ax)%t)
+(AX)20 (Ax(i—1),8(A%)%t)2/2
+(AX)3v(Ax(i —1),8(AX)%t)%/6+- -
=1+ (AX)v+(AX)2(v22— dyv)
+(AX)3(036—viyv + d2vI2)+--,  (8)
where
v(Ax(i—1),8(Ax)%t)=v(Axi,5(Ax)%t)
—(AX)dxv (AXi, 5(Ax)%t)
+(AX)29%0 (Axi, 5(Ax)?t)/2

h(i,t+1)=max{h(i—1t)+1h(i,t)+ Lh(i+ 1) +1].

By applying the limiting procedure similar to E@l), the
difference-difference equation is obtained

c(i,t+1)=[c(i—1t)+c(i—1t)c(i,t)
+c(i—1t)c(i,tc(i+1H)][1+c(i—1t)
+c(i—1t)c(i,t)] L (14

By applying the perturbation method to Ed4), we obtain
the KPZ equation

dth=[(axh)?+ 93h)/3. (15)

By comparing Eq.(15 with Eq. (12), only a coefficient
changes from 1/(%26) to 3. In the NNN ballistic model,
the unknown coefficiens does not appear.
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=v(X,T) = (AX)dyv(X,T)
+(AX)2050 (X, T)/2,

dx=0ldX, %= 0%l IX2.

Similarly, we obtain
cli+1t)=1+(Ax)v+(AX)2(v2/2+ dxv)

+(AX) 3036+ vayv+dZvl2)+-+, (9

c(i,t+1) =1+ (AX)v+ (AX) 2022+ (AX)3(v3/6+ Sd7v)

+oee, (10
where 9= 9/JT. By substituting the long-wavelength ex-
pansions(7)—(10) into Eq. (5), the first- and second-order
terms cancel. Only the third-order term remains. Thus we
obtain the Burgers equation

dtv=(2vdyv + dv)(1+25). (12)
By setting v(X,T)=(h(i,t)—h(i—11))/(e¢Ax)=dxh, the
KPZ equation is obtained

orh=[(dxh)?+ dzh]/(1+26). (12)
Here constan® is given by the ratio of the time increment
At to the square of the space incremeék. The ballistic
deposition process on coarse-grained scales can be described
by the KPZ equation.

IV. MODIFIED MODELS

Here we consider some modified versions of the ballistic
deposition model. First we consider the modified version of
the ballistic deposition with the next-nearest-neighbor
(NNN) sticking rule[1], as shown in Fig. 2. At timé+ 1, the
heighth(i,t+1) is given by

(13

We consider the one-sided deposition model shown in
Fig. 3. The depositing particle sticks on positiofi,t) +1 or
on positionh(i—1t)+1 on the left-hand side. The lateral
growth occurs only on the left-hand side. The one-sided
deposition model is described by the cellular automaton rule

h(i,t+1)=maxXh(i—1t)+21h(i,t)+1]. (16

By apply the limiting procedure to Eq16), we obtain the
difference-difference equation

c(i,t+1)=[c(i—1t)+c(i—10ci,t)]/[1+c(i—1)].
(17)

We define the slow variablesX=Ax(i—t/2) and T
=(Ax)%t. By setting



702 TAKASHI NAGATANI PRE 58

] Bl
I ] N
| 1 |
i-11id+1 i-1ii+l i-1ii+l 1-11 i-11
(a) (b) (© (@) (b)

FIG. 3. One-sided ballistic deposition model. The lateral growth

FIG. 2. Modified version of the ballistic deposition with the 8ccurs only on the left-hand side.

next-nearest-neighbor sticking rule. The lateral growth occurs at th

next-nearest neighbors. h(i,t+1)=ma{h(i— 1)+ n,h(i,t) +n,h(i + 1t)+n].
In (i, t)=(Ax)o (Ax(i—t/2), (Ax)2)=(Ax)v(X,T), (21)
Similarly, we can show that this model reduces to Bd).
the same long-wavelength expansionsc6ff,t), c(i—1}), Therefore, the number of depositing particles at a unit of
and c(i+1t) as in Eqgs.(7)—(9) are obtained. The long- time does not affect the resulting KPZ equation.
wavelength expansion af(i,t+ 1) is obtained as We consider the ballistic deposition model for a three-

) 5 o dimensional cubic lattice described as follows. At time¢he
c(i,t+1)=1+(Ax)v+(AX)*(v*/2= xv/2) height of the interface of site (j) is h(i,j,t). We choose a
+(AX)3(v316— v dyul2+ v I8+ dv) +- - | ranc_iom position gbove the s'urface_ and allow a part'icle to fall
vertically toward it. The particle sticks to the first site along
(18)  its trajectory that has an occupied nearest neighbor. At time

whereX=(Ax)(i—t/2), T=(AX)2t, dy=aldT, ay=alox, .+ theheighh(i,j,t+1)is given by

and 2= 9%/ 9X2. By inserting the long-wavelength expan- h(i,j,t+1)=max{h(i,j—1t),h(i—1,j,t),h(i,j,t)

sions (7)—(9) and (18) into Eq. (17), the KPZ equation is . , .

obtained through the Burgers equation +1h(i+1,0),h(i,j+10]. (22
arh=[(ayh)2+ 3)2(h]/8, (19 We apply the limiting procedure and the perturbation method

to Eqg. (22). Unfortunately, we have not been successful in
where X=(Ax)(i —t/2) andT=(Ax)2t. By comparing the Obtaining the two-dimensional KPZ equation.
one-sided model with the NNN model, the coefficignof
Eq. (19) is different from the coefficierg of Eq. (15). In Eq. V. SUMMARY

(19 the variableX=(Ax)?(i—t/2) is also different fromX In summary, we derived the KPZ equation from the bal-
=(Ax)% in Eq.(19). In the one-sided deposition model, the jistic deposition models using both the limiting procedure
deposition process can be described by the KPZ equation igng perturbation method. We showed a direct connection
terms of the moving frame with velocity. _ between the ballistic deposition and the KPZ equation. In the

In the original ballistic deposition model, at each time, agne-sided ballistic deposition model, the growth process was
particle is released from a chosen position above the surfacg|sg described in terms of the KPZ equation. We were suc-
located at a distance larger than the maximum height of thgagsfyl in the derivation of the KPZ equation ir-1 dimen-
interface. We extend one depositing particlentgarticles. sions, but could not derive the KPZ equation from the (2
At time t+1, the height(i,t+1) is given by +1)-dimensional ballistic deposition.

. . . _ . Our method for deriving the nonlinear equation from the
h(i,t+1)=max{h(i—16)+n=1h(i.t) cellular automaton is general and can be applied to other
+n,h(i+1t)+n—-1]. (200  cellular automata as well. Combining the limiting procedure

and the perturbation method, we are able to obtain continu-
When we apply the same limiting procedure and the pertureus analogs to discrete models in cases where the limiting
bation method to this model, theparticle model reduces to procedure alone would not work. Thus we consider our

Eq. (12). method to be a powerful tool for the investigation of
We consider the NNN model with depositimgparticles.  the analytical relationship between discrete and continuous
The NNN model is described by models.
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