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From ballistic deposition to the Kardar-Parisi-Zhang equation through a limiting procedure

Takashi Nagatani
Division of Thermal Science, College of Engineering, Shizuoka University, Hamamatsu 432, Japan

~Received 29 December 1997!

We show a direct connection between the ballistic deposition and the Kardar-Parisi-Zhang~KPZ! equation.
We derive the KPZ equation from the ballistic deposition models, using an important limiting procedure. The
cellular automaton rule is transformed into an integrable difference-difference equation through the limiting
procedure. By applying the perturbation method to the difference-difference equation, the difference-difference
equation is reduced to the KPZ equation through the Burgers equation. We apply the procedure to several types
of ballistic deposition models.@S1063-651X~98!00307-9#

PACS number~s!: 81.15.2z, 02.10.Jf, 68.35.2p
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I. INTRODUCTION

Deposition of particles on surfaces is a phenomenon
scientific interest with a broad range of practical applic
tions. The scaling properties of surface roughness have b
investigated by means of both numerical and analytical to
@1–22#. The surface roughness problem belongs to the ac
field of nonequilibrium statistical physics and irreversib
growth phenomena. The ballistic deposition model is
most basic and simplest one of irreversible growth mod
@1–3#. It is now generally believed that the ballistic depo
tion model is the discrete version of the continuous mo
introduced by Kardar, Parisi, and Zhang@22#. The continu-
ous model is described by the nonlinear partial differen
equation called the Kardar-Parisi-Zhang~KPZ! equation.
However, one cannot formally derive the KPZ equation. O
can develop a set of plausibility arguments using phys
principles, which motivate the addition of a nonlinear term
the linear Edward-Wilkinson equation@21#. The nonlinear
term represents the lateral growth when a new particle
added to the surface. Until now, there seemed to be no d
and formal derivation of the KPZ equation from the ballis
deposition model.

Recently, Tokihiroet al. @23# proposed such an ultradis
cretization method in which the Korteweg–de Vries equat
is transformed to a cellular automaton. They showed a di
connection between a cellular automaton and integrable n
linear wave equations. In this paper we show a direct
formal derivation of the KPZ equation from the ballist
deposition models.

II. LIMITING PROCEDURE

The ballistic deposition model for a two-dimension
square lattice can be described as follows. At timet, the
height of the interface of sitei is h( i ,t). We choose a ran
dom position above the surface and allow a particle to
vertically toward it. The particle sticks to the first site alon
its trajectory that has an occupied nearest neighbor. Figu
shows the schematic representation of the ballistic depos
model. At timet11, the heighth( i ,t11) is given by

h~ i ,t11!5max@h~ i 21,t !,h~ i ,t !11,h~ i 11,t !#, ~1!
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where max@ # is the maximum function. We consider th
difference of heights between nearest neighbors:

h~ i ,t11!2h~ i 21,t11!

5max@h~ i 21,t !,h~ i ,t !11,h~ i 11,t !#

2max@h~ i 22,t !,h~ i 21,t !11,h~ i ,t !#. ~2!

Next we take an important step using the limiting procedu
which is the key to making a transformation from a cellu
automaton to a difference-difference equation. The iden
for the limiting procedure is given by

max@A,B,C#5 lim
«→01

« ln~eA/«1eB/«1eC/«!, ~3!

where « is a positive infinitesmal value. By applying th
identity ~3! to Eq. ~2! we obtain

h~ i ,t11!2h~ i 21,t11!

5 lim
«→01

« ln
@eh~ i 21,t !/«1e@h~ i ,t !11#/«1eh~ i 11,t !/«#

@eh~ i 22,t !/«1e@h~ i 21,t !11#/«1eh~ i ,t !/«#
.

~4!

By replacing e@h( i ,t)2h( i 21,t)#/« by c( i ,t), we obtain the
difference-difference equation

c~ i ,t11!5@dc~ i 21,t !1c~ i 21,t !c~ i ,t !

1dc~ i 21,t !c~ i ,t !c~ i 11,t !#@d1c~ i 21,t !

1dc~ i 21,t !c~ i ,t !#21, ~5!

whered5e21/«.

III. PERTURBATION METHOD

We now consider the hydrodynamic mode in the rou
surface on coarse-grained scales. The simplest way to
scribe the hydrodynamic mode is the long-wavelength
pansion. We apply the perturbation method to Eq.~5! @24#.
We wish to extract slow scales for the space variablei and
time variablet. For uDxu!1, we therefore define the slow
variablesX andT,
700 © 1998 The American Physical Society
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X5~Dx!i , T5d~Dx!2t. ~6!

By setting lnc(i,t)5(Dx)v„Dxi,d(Dx)2t…5(Dx)v(X,T), we
expandc( i ,t) to order (Dx)3. We obtain

c~ i ,t !5exp@~Dx!v~X,T!#511~Dx!v1~Dx!2v2/2

1~Dx!3v3/61¯ , ~7!

where v5v(X,T) in the second equality. We expandc( i
21,t) to order (Dx)3. We obtain

c~ i 21,t !511~Dx!v„Dx~ i 21!,d~Dx!2t…

1~Dx!2v„Dx~ i 21!,d~Dx!2t…2/2

1~Dx!3v„Dx~ i 21!,d~Dx!2t…3/61¯

511~Dx!v1~Dx!2~v2/22]Xv !

1~Dx!3~v3/62v]Xv1]X
2v/2!1--, ~8!

where

v„Dx~ i 21!,d~Dx!2t…5v„Dxi,d~Dx!2t…

2~Dx!]Xv„Dxi,d~Dx!2t…

1~Dx!2]X
2v„Dxi,d~Dx!2t…/2

FIG. 1. Schematic representation of the ballistic deposit
model. A particle falls vertically. The particle sticks to the first s
along its trajectory that has an occupied nearest neighbor.
5v~X,T!2~Dx!]Xv~X,T!

1~Dx!2]X
2v~X,T!/2,

]X5]/]X, ]X
25]2/]X2.

Similarly, we obtain

c~ i 11,t !511~Dx!v1~Dx!2~v2/21]Xv !

1~Dx!3~v3/61v]Xv1]X
2v/2!1¯ , ~9!

c~ i ,t11!511~Dx!v1~Dx!2v2/21~Dx!3~v3/61d]Tv !

1¯ , ~10!

where ]T5]/]T. By substituting the long-wavelength ex
pansions~7!–~10! into Eq. ~5!, the first- and second-orde
terms cancel. Only the third-order term remains. Thus
obtain the Burgers equation

]Tv5~2v]Xv1]X
2v !/~112d!. ~11!

By setting v(X,T)5„h( i ,t)2h( i 21,t)…/(«Dx)5]Xh, the
KPZ equation is obtained

]Th5@~]Xh!21]X
2h#/~112d!. ~12!

Here constantd is given by the ratio of the time incremen
Dt to the square of the space incrementDx. The ballistic
deposition process on coarse-grained scales can be desc
by the KPZ equation.

IV. MODIFIED MODELS

Here we consider some modified versions of the ballis
deposition model. First we consider the modified version
the ballistic deposition with the next-nearest-neighb
~NNN! sticking rule@1#, as shown in Fig. 2. At timet11, the
heighth( i ,t11) is given by

n

h~ i ,t11!5max@h~ i 21,t !11,h~ i ,t !11,h~ i 11,t !11#. ~13!
in

l
ed
ule
By applying the limiting procedure similar to Eq.~1!, the
difference-difference equation is obtained

c~ i ,t11!5@c~ i 21,t !1c~ i 21,t !c~ i ,t !

1c~ i 21,t !c~ i ,t !c~ i 11,t !#@11c~ i 21,t !

1c~ i 21,t !c~ i ,t !#21. ~14!

By applying the perturbation method to Eq.~14!, we obtain
the KPZ equation

]Th5@~]Xh!21]X
2h!/3. ~15!

By comparing Eq.~15! with Eq. ~12!, only a coefficient
changes from 1/(112d) to 1

3 . In the NNN ballistic model,
the unknown coefficientd does not appear.
We consider the one-sided deposition model shown
Fig. 3. The depositing particle sticks on positionh( i ,t)11 or
on positionh( i 21,t)11 on the left-hand side. The latera
growth occurs only on the left-hand side. The one-sid
deposition model is described by the cellular automaton r

h~ i ,t11!5max@h~ i 21,t !11,h~ i ,t !11#. ~16!

By apply the limiting procedure to Eq.~16!, we obtain the
difference-difference equation

c~ i ,t11!5@c~ i 21,t !1c~ i 21,t !c~ i ,t !#/@11c~ i 21,t !#.
~17!

We define the slow variablesX5Dx( i 2t/2) and T
5(Dx)2t. By setting
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ln c~ i ,t !5~Dx!v„Dx~ i 2t/2!, ~Dx!2t…5~Dx!v~X,T!,

the same long-wavelength expansions ofc( i ,t), c( i 21,t),
and c( i 11,t) as in Eqs.~7!–~9! are obtained. The long
wavelength expansion ofc( i ,t11) is obtained as

c~ i ,t11!511~Dx!v1~Dx!2~v2/22]Xv/2!

1~Dx!3~v3/62v]Xv/21]X
2v/81]Tv !1¯ ,

~18!

whereX5(Dx)( i 2t/2), T5(Dx)2t, ]T5]/]T, ]X5]/]X,
and ]X

25]2/]X2. By inserting the long-wavelength expan
sions ~7!–~9! and ~18! into Eq. ~17!, the KPZ equation is
obtained through the Burgers equation

]Th5@~]Xh!21]X
2h#/8, ~19!

whereX5(Dx)( i 2t/2) andT5(Dx)2t. By comparing the
one-sided model with the NNN model, the coefficient1

8 of
Eq. ~19! is different from the coefficient13 of Eq. ~15!. In Eq.
~19! the variableX5(Dx)2( i 2t/2) is also different fromX
5(Dx)2i in Eq. ~15!. In the one-sided deposition model, th
deposition process can be described by the KPZ equatio
terms of the moving frame with velocity12 .

In the original ballistic deposition model, at each time
particle is released from a chosen position above the surf
located at a distance larger than the maximum height of
interface. We extend one depositing particle ton particles.
At time t11, the heighth( i ,t11) is given by

h~ i ,t11!5max@h~ i 21,t !1n21,h~ i ,t !

1n,h~ i 11,t !1n21#. ~20!

When we apply the same limiting procedure and the per
bation method to this model, then-particle model reduces to
Eq. ~12!.

We consider the NNN model with depositingn particles.
The NNN model is described by

FIG. 2. Modified version of the ballistic deposition with th
next-nearest-neighbor sticking rule. The lateral growth occurs a
next-nearest neighbors.
in

e,
e

r-

h~ i ,t11!5max@h~ i 21,t !1n,h~ i ,t !1n,h~ i 11,t !1n#.

~21!

Similarly, we can show that this model reduces to Eq.~15!.
Therefore, the number of depositing particles at a unit
time does not affect the resulting KPZ equation.

We consider the ballistic deposition model for a thre
dimensional cubic lattice described as follows. At timet, the
height of the interface of site (i , j ) is h( i , j ,t). We choose a
random position above the surface and allow a particle to
vertically toward it. The particle sticks to the first site alon
its trajectory that has an occupied nearest neighbor. At t
t11, the heighth( i , j ,t11) is given by

h~ i , j ,t11!5max@h~ i , j 21,t !,h~ i 21,j ,t !,h~ i , j ,t !

11,h~ i 11,j ,t !,h~ i , j 11,t !#. ~22!

We apply the limiting procedure and the perturbation meth
to Eq. ~22!. Unfortunately, we have not been successful
obtaining the two-dimensional KPZ equation.

V. SUMMARY

In summary, we derived the KPZ equation from the b
listic deposition models using both the limiting procedu
and perturbation method. We showed a direct connec
between the ballistic deposition and the KPZ equation. In
one-sided ballistic deposition model, the growth process w
also described in terms of the KPZ equation. We were s
cessful in the derivation of the KPZ equation in 111 dimen-
sions, but could not derive the KPZ equation from the
11)-dimensional ballistic deposition.

Our method for deriving the nonlinear equation from t
cellular automaton is general and can be applied to o
cellular automata as well. Combining the limiting procedu
and the perturbation method, we are able to obtain cont
ous analogs to discrete models in cases where the limi
procedure alone would not work. Thus we consider o
method to be a powerful tool for the investigation
the analytical relationship between discrete and continu
models.

e

FIG. 3. One-sided ballistic deposition model. The lateral grow
occurs only on the left-hand side.
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