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Thermodynamic theory for the jamming transition in traffic flow

Takashi Nagatani
Division of Thermal Science, College of Engineering, Shizuoka University, Hamamatsu 432-8561, Japan

~Received 17 April 1998!

A thermodynamic theory is formulated for describing the phase transition and critical phenomenon occurring
in traffic flow. We derive the time-dependent Ginzburg-Landau~TDGL! equation from the car-following
model. We find the thermodynamic potential for traffic flow where the headway and the inverse of the delay
time correspond respectively to order parameter and temperature. It is shown that the coexisting curve and
spinodal line are given respectively by the first and second derivatives of the potential with order parameter
~the headway!. We prove that the jamming transition is the first-order transition below the critical point and the
metastable region exists between the coexisting curve and spinodal line. We show the connection between
TDGL equation and the modified Korteweg–de Vries equation describing the traffic jam. We also compare the
nonlinear analysis result with the simulation. It is shown that the coexisting curve is consistent with the
simulation result.@S1063-651X~98!04710-2#

PACS number~s!: 05.70.Fh, 05.70.Jk, 89.40.1k
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I. INTRODUCTION

Recently, traffic problems have attracted considerable
tention @1#. A variety of approaches have been applied
describe the collective properties of traffic flow@2–28#. The
jamming transitions between the freely moving traffic a
the jammed traffic have been found in their traffic mode
The transitions have been observed in actual traffic@29,30#.
The fluid dynamic model and the car-following models ha
been studied analytically by the linear stability theory a
the nonlinear analysis method@31,32#. The modified
Korteweg–de Vries~KdV! equation has been derived fro
the car-following model where traffic jams were described
terms of a kink-antikink solution@32#.

The jamming transitions have properties very similar
the conventional phase transition. With increasing car d
sity, the freely moving traffic changes to the jammed traf
at a specific value of density. In the congested traffic flow~at
high density!, the uniform traffic flow becomes unstabl
Then, the unstable traffic flow results in the formation
traffic jams in which the freely moving traffic of low densit
coexists with the jammed traffic of high density. The free
moving traffic and jammed traffic correspond respectively
the gas and liquid phases in the conventional gas-liq
phase transition: the headway or car density correspon
the volume or density, and the inverse of the delay ti
~sensitivity parameter! corresponds to temperature. Th
metastable region appears near the point of maximal cur
in the fundamental diagram@33,34#. The metastability is
similar to that in the first-order phase transition. Also, t
critical point exists in traffic flow of the car following mod
els @32,35#.

Though the properties similar to the phase transitions
critical phenomena have been found in the traffic flow mo
els, to our knowledge, the thermodynamic representation
scribing the jamming transition was unknown until now. It
important to derive the thermodynamic theory of the traf
flow from the traffic flow models. Also, it is interesting t
connect the traffic metastability with the spinodal decom
sition in the first-order phase transition.
PRE 581063-651X/98/58~4!/4271~6!/$15.00
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Now, it is well known that the time-dependent Ginzbur
Landau ~TDGL! equation can describe the nonequilibriu
phase transition including the metastability@36,37#. The
TDGL equation has two kinds of solutions in the stea
state: one is the uniform solution and the other is the solu
of the kink-antikink form. Recently, it has been shown th
the traffic flow near the critical point can be described by
modified KdV equation which has a traveling wave soluti
of the kink-antikink form. To our knowledge, how to de
scribe the jamming transition by the TDGL equation has
been known until now.

In this paper, we present a thermodynamic theory to
scribe the collective properties of traffic flow. We derive t
TDGL equation from the car-following model. We find th
thermodynamic potential describing the coarse-grained
havior of traffic flow. We prove that the jamming transitio
and the metastability are described in terms of the therm
dynamic theory. We derive the TDGL equation from th
modified KdV equation. We carry out the simulation for th
car-following model. We compare the theoretical result w
the simulation result.

The organization of the paper is as follows. In Sec. II w
present a modified version of the car-following model an
lyzed by Newell@2# and Whitham@3#. In Sec. III we derive
the TDGL equation from the car-following model. We give
thermodynamic theory describing the jamming transition.
Sec. IV we derive the modified KdV equation from the ca
following model. We show the connection between t
modified KdV and the TDGL equations. In Sec. V we app
the linear stability analysis to the car-following model.
Sec. IV we present the simulation result. We compare
simulation result with the theoretical result. Section V
gives a summary.

II. CAR-FOLLOWING MODEL

We present a modified version of the car-following mod
analyzed by Newell@2# and Whitham@3#. The car-following
model is described by the equation of motion of carn:

dxn~ t1t!/dt5V„Dxn~ t !…, ~1!
4271 © 1998 The American Physical Society



ch

l

t

e
q
io

l
o
n
nt

o
-

es

c
n-

he
c
th
g
it

ity

el

s
he
id
x

n-

4272 PRE 58TAKASHI NAGATANI
whereDxn(5xn112xn) is the headway andt is the delay
time. The idea is that a driver adjusts the car velocitydxn /dt
according to the observed headwayDxn(t). The delay timet
allows for the time lag that it takes the car velocity to rea
the optimal velocityV(Dxn) when the traffic flow is varying.
Newell @2# and Whitham@3# have used the following optima
velocity function:

V~Dxn!5vmax$12exp@2~g/v !~Dxn2L !#%, ~2!

wherevmax is the maximal velocity,L is the car length, and
g is a constant. Equation~2! is a monotonically increasing
function with Dxn . This optimal velocity function does no
have the turning point~inflection point!. If we choose New-
ell’s function ~2! as the optimal velocity, we cannot deriv
the TDGL equation and the modified KdV equation from E
~1!. Therefore, we choose the same optimal velocity funct
as that used by Bandoet al. @4#

V~Dxn!5~vmax/2!$tanh~Dxn2hc!1tanh~hc!%, ~3!

wherehc is the safety distance. Equation~3! has a turning
point atDxn5hc :V9(hc)50. It is important that the optima
velocity function has a turning point. Otherwise, we cann
derive the TDGL equation and the modified KdV equatio
which have a kink-antikink density wave solution represe
ing the traffic jam. For simplicity, we setvmax52 hereafter.
The realistic values of parametersvmax andhc will be deter-
mined by comparing with the observed experimental data
traffic. Bandoet al. @4# have determined the values of param
etersvmax andhc which reproduce the characteristic featur
of the observed traffic flow data.

Generally, it is necessary that the optimal velocity fun
tion has the following properties: It is a monotonically i
creasing function, it has an upper bound~maximal velocity!,
and it has a turning point at the safety distance. Thus, w
the headway is less than the safety distance, the car velo
is reduced and small enough to prevent crashing into
preceding car. On the other hand, if the headway is lar
than the safety distance, the car moves with higher veloc
The car velocity does not exceed the maximal veloc
Equation~3! satisfies the above properties.

Bandoet al. @4# have proposed the optimal velocity mod
described by the following differential equation:

d2xn /dt25a@V„Dxn~ t !…2dxn /dt#, ~4!

wherea is the sensitivity andV(Dxn) is given by Eq.~3!. In
this model, the inverse of sensitivitya corresponds to delay
time t in Eq. ~1!. Komatsu and Sasa@32# have derived the
modified KdV equation from Eq.~4!. Unfortunately, we can
not derive the TDGL equation from Eq.~4!. Therefore, we
adopt the modified Newell’s model described by Eq.~1! with
Eq. ~3!.

III. TDGL EQUATION

We show the derivation of the TDGL equation from Eq
~1! and ~3!. We wish to derive the equation describing t
collective motion on coarse-grained scales. We now cons
the slowly varying behaviors at long wavelengths. We e
tract slow scales for space variablen and time variablet @38#.
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For 0,«!1, we define the slow variablesX andT,

X5«~n1V8t ! and T5«3V8t, ~5!

where V85dV(Dxn)/dDxnuDxn5hc
. We rewrite Eq.~1! as

follows:

dDxn~ t1t!/dt5V„Dxn11~ t !…2V„Dxn~ t !…. ~6!

We set headwayDxn(t) as

Dxn~ t !5hc1«R~X,T!. ~7!

By inserting Eq.~7! into the left-hand side of Eq.~6! and
expanding to fifth order of«, one obtains the following:

dDxn~ t1t!/dt5«2V8]XR1«3V82t]X
2R1«4~V83t2/2!]X

3R

1«5~V84t3/6!]X
4R1«4]TR

1«52V8t]X]TR. ~8!

By expanding the optimal velocity function around the tur
ing point, inserting Eq.~7! into the right-hand side of Eq.~6!,
and expanding to fifth order of«, one obtains

V~Dxn11!2V~Dxn!

5V8~Dxn112Dxn!1~V-/6!@~Dxn112hc!
3

2~Dxn2hc!
3#

5V8@«2]XR1«3~1/2!]X
2R1«4~1/6!]X

3R1«5~1/24!]X
4R#

1~V-/6!@«4]XR31«5~1/2!]X
2R3#. ~9!

By inserting Eqs.~8! and ~9! into Eq. ~6!, we obtain the
following:

«4]TR1«52V8t]T]XR

5«3V8~1/22V8t!]X
2R1«4V8~1/62V82t2/2!]X

3R

1«4~V-/6!]XR31«5V8~1/242V83t3/6!]X
4R

1«5~V-/12!]X
2R3. ~10!

We consider the neighborhood ofV8t51/2:

V8t51/21«2. ~11!

Equation~10! is rewritten as

«4]TR5«4V8~1/24!]X
3R2«4~ uV-u/6!]XR3

1«3V8~1/22V8t!]X
2R2«5V8~1/48!]X

4R

1«5~ uV-u/12!]X
2R3, ~12!

whereV-,0.
By transforming variablesX andT to variablesx5«21X

and t5«23T and taking«R(X,T)5S(x,t), Eq. ~12! is re-
written as follows:

] tS5~V8/24!]x
3S2~ uV-u/6!]xS

32V8~V8t21/2!]x
2S

2~V8/48!]x
4S1~ uV-/12!]x

2S3. ~13!
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By adding term 2V8(V8t21/2)]xS to both the left- and
right-hand sides and performing Galilean transformationt1
5t andx15x12V8(V8t21/2)t1 , we obtain

] t1
S5@]x1

2~1/2!]x1

2 #@~V8/24!]x1

2 S12V8~V8t21/2!S

2~ uV-u/6!S3#. ~14!

We define the thermodynamic potential:

f~S![2V8~V8t21/2!S21~ uV-u/24!S4, ~15!

whereV85V8(hc) andV-5V-(hc) ~,0!. By rewriting Eq.
~14! with Eq. ~15!, we obtain the TDGL equation:

] t1
S52@]x1

2~1/2!]x1

2 #dF~S!/dS

with

F~S![E dx@~V8/48!~]x1
S!21f~S!#, ~16!

whered/dS indicates the functional derivative.
The TDGL equation~16! has two steady-state solution

except for a trivial solutionS50: one is the uniform solution

S~x1 ,t1!56@6V8~2V8t21!/uV-u#1/2, ~17!

and the other is the kink solution

S~x1 ,t1!56@6V8~2V8t21!/uV-u#1/2

3tanh@$12~2V8t21!%1/2~x12x10!#, ~18!

wherex10 is a constant. Equation~18! represents the coex
isting phase.

The coexisting curve is given by the condition

]f/]S50 and ]2f/]S2.0. ~19!

From Eqs.~15! and ~19!, we obtain the coexisting curve i
terms of the original parameters

~Dx!co5hc1@6V8~2V8t21!/uV-u#1/2. ~20!

The spinodal line is given by the condition

]2f/]S250. ~21!

From Eqs.~15! and~21!, we obtain the spinodal line in term
of the original parameters

~Dx!sp5hc1@2V8~2V8t21!/uV-u#1/2. ~22!

The critical point is given by the condition

]f/]S50 and ]2f/]S250. ~23!

From Eqs.~15! and~23!, we obtain the critical point in terms
of the original parameters

~Dx!c5hc and 1/tc52V8. ~24!

Figure 1 shows the phase diagram between headwayDx and
inverse 1/t of delay time wherehc55.0, V8(hc)51 and
V-(hc)522 in Eq. ~3!. The solid curve indicates the coex
isting curve given by Eq.~20!. The dotted line indicates the
spinodal line given by Eq.~22!. The critical point is given by
Dx5hc55.0 and 1/t52.0. In the region within the coexist
ing curve, the freely moving phase coexists with the co
gested phase. The intermediate regions between the coe
ing curve and the spinodal line represent the metasta
regions. The full circles indicate the simulation result of t
coexisting phase boundaries explained lately in Sec. VI.

Generally, the jamming transition is the first-order pha
transition below the critical point. The metastability o
served in the traffic flow models corresponds to the spino
decomposition in the conventional first-order phase tran
tion.

IV. MODIFIED KdV EQUATION

We derive the modified KdV equation from Eqs.~1! and
~3!. Then, we show the connection between the modifi
KdV equation and the TDGL equation. We consider t
slowly varying behavior at long wavelengths near the criti
point. We extract slow scales for space variablen and time
variablet. For 0,«!1, we define the slow variablesX and
T,

X52«~n1V8t ! and T5«3V8t/3, ~25!

where«252V8t21.
We set headwayDxn(t) as

Dxn~ t !5hc1«~V8/uV-u!1/2r ~X,T!. ~26!

By inserting Eq.~26! into Eq. ~6! and expanding to fifth
order of«, we obtain the regularized equation

]Tr 2]X
3r 1]Xr 352«M @r #, ~27!

where

M @r #56]X
2r 1]X

4r 2]X
2r 3. ~28!

FIG. 1. Phase diagram in the (Dx, 1/t! plane, whereDx is the
headway, 1/t is the inverse of delay time, the safety distance ishc

55.0, V8(hc)51, andV-(hc)522. The critical point is given by
Dx5hc55.0, and 1/t52.0. The solid curve represents the coexi
ing curve given by Eq.~20!. The dotted line represents the spinod
line given by Eq.~22!. The full circles indicate the simulation re
sult.
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Equation~27! is the modified KdV equation with anO(«)
correction term on the right-hand side. Equation~27! is con-
sistent with Eq.~12!. We note that hereafter all derivatives
the optimal velocity are evaluated atDx5hc .

Let us find the propagating solution of Eq.~27! with con-
stant velocityc by settingr (X,T)5r (X2cT). First, we ig-
nore theO(«) terms in Eq.~27! and get the modified KdV
equation, which has the kink solution

r 0~X2cT!5c1/2 tanh@~c/2!1/2~X2cT!#. ~29!

Next, assumingr 5r 01«r 1 , we take into account theO(«)
correction and get the equation forr 1 as

Lr 15M @r 0#, ~30!

where

L5c]X1]X
323r 0

2]X23]Xr 0
2. ~31!

To determine the selected value of the propagation ve
ity c for the kink solution~29!, we consider the solvability
condition for Eq.~30!:

~F0 ,M @r 0# ![E
2`

1`

dX F0M @r 0#, ~32!

whereF0 is the zeroth eigenfunction of the adjoint opera
L†:

L†F050, L†52c]X2]X
313r 0

2]X . ~33!

Fortunately, we find that the zeroth-order solutionr 0 itself
satisfies Eq.~33! and can chooseF05r 0 . Performing the
integration, we obtain the selected velocity as

c56. ~34!

This value is different from the result of the differenti
equation model obtained by Komatsu and Sasa@32#. Near
the critical point, we obtain the propagating kink solution

Dxn~ t !5hc6@6V8~2V8t21!/uV-u#1/2

3tanh@$12~2V8t21!%1/2$n1V8~222V8t!t%#.

~35!

The propagating velocityvp of jam ~kink! is given by

vp5V8~222V8t!. ~36!

The kink solution ~35! obtained from the modified KdV
equation agrees with Eq.~18! by the TDGL equation.

The traffic jam seems to be static from the point of vie
of the backward moving frame with velocity~36!. Thus, the
jamming transition can be described by both TDGL equat
~16! with a nontraveling solution and modified KdV equatio
~27! with a propagating solution.

V. LINEAR STABILITY ANALYSIS

We apply the linear stability theory to our model. W
consider the stability of a uniform traffic flow. The uniform
traffic flow is defined by such a state that all cars move w
c-

r

n

h

constant headwayh and optimal velocityV(h). The solution
of the uniform steady state is given by

xn,0~ t !5hn1V~h!t with h5L/N, ~37!

whereN is the number of cars,L is the system size, andh is
the car spacing~identical headway!.

Let yn(t) be small deviations from the uniform solutio
xn,0(t):xn(t)5xn,0(t)1yn(t). Then, the linearized equatio
is obtained from Eq.~1!,

dyn~ t1t!/dt5V8~h!Dyn~ t !, ~38!

whereV8(h) is the derivative of optimal velocityV(Dx) at
Dx5h.

By expandingyn(t)5Y exp(ikn1zt), one obtains

zezt5V8~h!~eik21!. ~39!

Let us derive the long wave expansion ofz, which is deter-
mined order by order aroundik;0,

z5z1 ik1z2~ ik !21z3~ ik !31z4~ ik !4,

z15V8,

z252V8~2V8t21!/2, ~40!

z35V8/62V83t2/21V82t~2V8t21!,

FIG. 2. Typical plot of the headway against numbered carn for
total car number 100, car densityr50.2, safety distancehc55.0,
and inverse 1/t51.7 of delay time. The region with the short hea
way indicates the density wave~traffic jam!, which propagates
backward.

FIG. 3. Fundamental diagram of flowq against densityr. There
are two kinds of data points for 1/t52.2 and 1/t50.9. For 1/t
50.9 below the critical point, there are two discontinuous poi
characterizing the transitions.
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z45V8/242V82t/315V84t3/6

27V83t2~2V8t21!/42V82t~2V8t21!2/4,

whereV85V8(h).
If z2,0, the uniform traffic flow is unstable. We obta

the stability conditiont,1/@2V8(h)#. When a small distur-
bance is added to the uniform flow~with a constant headwa
and the optimal velocity! satisfying the above condition, it
uniform flow is always stable. We obtain the neutral stabil
condition

t51/@2V8~h!#. ~41!

By expanding V8(h) around the critical point
V8(hc):V8(h)5V8(hc)1V-(hc)(h2hc)

2/2 and replacing
the expansion into Eq.~41!, we obtain

h2hc56@2V8~hc!~2V8~hc!t21!/uV-~hc!u#1/2. ~42!

This is consistent with the spinodal line~22!. The neutral
stability line near the critical point agrees with the spinod
line.

VI. SIMULATION

We perform a numerical simulation for our model d
scribed by Eqs.~1! and ~3!. Initially, cars are randomly dis
tributed on the one-dimensional space with car densityr and
initial velocity v0 . The boundary is periodic. In order t
form a single jam, a hindrance is put at a point on the o
dimensional space. We assume that when a car reache
hindrance its car slows down instantly to low velocity.
time, a localized jam is formed just behind the hindran
After the jam is formed, the hindrance is removed. The j
propagates backward with constant propagation veloc
Once the single jam is formed for a special range of dens
the jam is stable and does not break up. The jam has a f
of the kink-antikink. The stable jam occurs at an interme
ate density. For low density, a jam disappears in time and
cars move freely with nearly maximal velocity. For hig
density, a jam also disappears in time and a congested
form traffic flow appears. Thus, we can make a stable jam
the one-dimensional space for special values of density.
take the number of cars as 100–400. The safety distanc
set ashc55.0. Figure 2 shows a typical plot of the headw
against numbered carn for total car number 100, car densit
r50.2, safety distancehc55.0, and inverse 1/t51.7 of de-
lay time. The profile of headway was obtained after a su
ciently long time. The stable density wave appears with
kink-antikink form. The density wave has a symmetric for
The region with the short headway indicates the traffic j
~density wave!. The density wave propagates backwa
~from right to left! where cars move from left to right.
l

-
the
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-
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ni-
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e
is

-
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In Fig. 1, we show the plot of maximal headwayDxmax
and minimal headwayDxmin against the inverse 1/t of delay
time where densityr50.2, safety distancehc55.0 and the
total car number is 400. The headway out of the jam is nea
constant but we choose the maximal value among th
Also, the headway within the jam is nearly constant but
choose the minimal value among them. One obtains
maximal and minimal headways when a density wave~traffic
jam! occurs. The full circular points indicate the maxim
and minimal headways obtained from simulation. For a s
cial range of density, a jam appears. When a jam occurs,
maximal and minimal headways result in the same values
a constant value oft. The simulation result agrees with th
coexisting curve obtained from the theory. There is a criti
point. It is given byhc55.0 and (1/t)c51.9560.05. When
1/t is larger than (1/t)c , no density wave appears.

We calculate the fundamental diagram. The fundame
diagram is obtained for an initial random configuration
cars without the hindrance. Figure 3 shows the fundame
diagram of flowq against densityr. Two kinds of data points
for 1/t52.2 and 1/t50.9 are indicated in Fig. 3. For 1/t
50.9 below the critical point, there are two discontinuo
points characterizing the transitions in the fundamental d
gram. Systems with 1/t below the critical point depicted in
Fig. 3 differ from systems with 1/t above the critical point
by displaying no transition. The gaps appearing in the fu
damental diagram below the critical point are due to
metastability@33,34#. The phenomenon is similar to that ob
served by Krauss, Wagner, and Gawron@33#.

VII. SUMMARY

We presented the formulation of the thermodynam
theory for the jamming transition in traffic flow. We derive
the TDGL equation from the car-following model, using th
perturbation method. We showed that the order paramet
given by the headway and the inverse 1/t of delay time cor-
responds to temperature in the conventional phase transi
We found the thermodynamic potential described by
headway and 1/t for the traffic flow. We showed that the
coexisting curve, the spinodal line, and the critical point a
described by the derivatives of the potential, similarly to t
conventional phase transitions and critical phenomena.
also carried out the numerical simulation. We compared
theoretical result with the simulation result. We showed t
the coexisting curve agrees with the simulation. We deriv
the modified KdV equation from the car-following mod
and showed the connection between the TDGL equation
the modified KdV equation. We showed that the neutral s
bility line is consistent with the spinodal line. We proved th
the jamming transition can be described exactly in terms
terminology of the phase transitions and critical phenome
ug-
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