
PHYSICAL REVIEW E MAY 1999VOLUME 59, NUMBER 5
Jamming transition in a two-dimensional traffic flow model

Takashi Nagatani
Division of Thermal Science, College of Engineering, Shizuoka University, Hamamatsu 432-8561, Japan

~Received 23 November 1998!

Phase transition and critical phenomenon are investigated in the two-dimensional traffic flow numerically
and analytically. The one-dimensional lattice hydrodynamic model of traffic is extended to the two-
dimensional traffic flow in which there are two types of cars~northbound and eastbound cars!. It is shown that
the phase transition among the freely moving phase, the coexisting phase, and the uniformly congested phase
occurs below the critical point. Above the critical point, no phase transition occurs. The valueac of the critical
point decreases as increasing fractionc of the eastbound cars forc<0.5. The linear stability theory is applied.
The neutral stability lines are found. The time-dependent Ginzburg-Landau~TDGL! equation is derived by the
use of nonlinear analysis. The phase separation lines, the spinodal lines, and the critical point are calculated
from the TDGL equation.@S1063-651X~99!00405-5#

PACS number~s!: 05.90.1m, 05.70.Fh, 05.70.Jk, 89.40.1k
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I. INTRODUCTION

Recently, traffic problems have attracted considerable
tention @1–3#. One-dimensional traffic flow has been inve
tigated by the use of a variety of models@4–27#. The jam-
ming transitions between the freely moving traffic and t
jammed traffic have been found in the following on
dimensional traffic models: the Nagel-Schreckenberg~cellu-
lar automaton! model@7#, the car following~dynamic! mod-
els @6#, and the hydrodynamic model@19#. The transitions
have properties very similar to the conventional phase tr
sitions and critical phenomena. In the car following model
the one-dimensional traffic flow, the jamming transition h
been described in terms of thermodynamic terminology
phase transitions and critical phenomena@28#. The thermo-
dynamic potential describing the jamming transitions h
been found by the analytical method.

On the other hand, two-dimensional traffic flow has be
investigated by the use of the cellular automation mod
@29–35#. Biham, Middelton, and Levine@29# have proposed
a two-dimensional traffic cellular automaton model~BML
model! for a network of city roads on a square lattice. The
are two types of cars in the model: one type of cars~east-
bound cars! is able to move only in the positivex direction
and the other type of cars~northbound cars! only in the posi-
tive y direction. They have found that a phase transition fr
a freely moving phase to a perfectly jammed phase occ
with increasing car density. The two-dimensional cellular a
tomaton model has been extended to traffic problems w
two-level crossing@30#, direction changing@31#, and car ac-
cidents. The cellular automaton models have been analy
by the use of the mean-field theory@30,34#.

One-dimensional traffic flow problems have been inve
gated extensively by the use of various models, but tw
dimensional problems have been studied only with use of
cellular automaton model. Until now, the two-dimension
traffic flow problems have seldom been investigated by
hydrodynamic model and the car following model. The h
drodynamic and car following models have the merit that
linear stability analysis and the nonlinear analysis can
applied.
PRE 591063-651X/99/59~5!/4857~8!/$15.00
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In this paper, we present a lattice hydrodynamic model
two-dimensional traffic flow. We study numerically and an
lytically the two-dimensional traffic behavior in the lattic
hydrodynamic model. We show that the phase transition
curs among the freely moving phase, the coexisting ph
and the uniformly congested phase. We apply the linear
bility theory and nonlinear analysis to the lattice hydrod
namic model. We derive the time-dependent Ginzbu
Landau equation. We calculate the phase separation li
the spinodal lines, and the critical point. We compare
analytical result with the simulation result.

II. LATTICE HYDRODYNAMIC MODEL

We present a lattice hydrodynamic model for tw
dimensional traffic flow. For simplicity, we consider on
two types of cars, similar to the BML model@29#: one type
of cars~eastbound cars! moves only in the positivex direc-
tion and the other type of cars~northbound cars! moves only
in the positivey direction. The continuity equation relates th
local density of eastbound cars~northbound cars! to the local
average speed. The speed and density of eastbound
~northbound cars! are denoted, respectively, byu(x,y,t)
@n(x,y,t)# andrx(x,y,t) @ry(x,y,t)#. The continuity equa-
tions of the eastbound and northbound cars are given, res
tively, by

] trx~x,y,t !1]xrx~x,y,t !u~x,y,t !50, ~1!

] try~x,y,t !1]yry~x,y,t !n~x,y,t !50, ~2!

where] t5]/]t, ]x5]/]x, and]y5]/]y.
We assume that the traffic current is adjusted by the

timal current with a delay time. The traffic currents of ea
bound and northbound cars are given, respectively, by

rx~x,y,t1t!u~x,y,t1t!5cr0V„r~x1x0 ,y,t !…, ~3!

ry~x,y,t1t!n~x,y,t1t!5~12c!r0V„r~x,y1y0 ,t !…,
~4!
4857 ©1999 The American Physical Society
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4858 PRE 59TAKASHI NAGATANI
where c is the fraction of eastbound cars,r0 is the total
average density,r(x,y,t)@5rx(x,y,t)1ry(x,y,t)# is the lo-
cal density,x0 is the average headway of eastbound cars,
y0 is the average headway of northbound cars. Equations~3!
and ~4! are the evolution equations in the place of t
Navier-Stokes equation. The functionV„r(x,y,t)… is called
the optimal velocity. The delay timet allows for the time lag
that it takes the traffic current to reach the optimal curr
when the traffic flow is varying. The idea is that traffic cu
rents rx(x,y,t)u(x,y,t) and ry(x,y,t)n(x,y,t) at position
~x,y! at time t are adjusted by the optimal curren
cr0V„r(x1x0 ,y,t2t)… at position (x1x0 ,y) and (1
2c)r0V„r(x,y1y0 ,t2t)… at position (x,y1y0) at time t
2t. This is similar to the idea of the one-dimensional c
following model analyzed by Newell@4# and Whitham@5#.
In the limit of c50 or 1, the above two-dimensional hydro
dynamic model reduces to the one-dimensional hydro
namic model@36#. In the one-dimensional hydrodynam
model, it has been proved that the jamming transition occ

We transform the hydrodynamic model to the latti
model. The time and space derivatives are replaced by
following differences:

] trx~x,y,t !>
rx~x,y,t1t!2rx~x,y,t !

t
, ~5!

]xrx~x,y,t !u~x,y,t !

>
rx~x,y,t !u~x,y,t !2rx~x2x0 ,y,t !u~x2x0 ,y,t !

x0
, ~6!

]yry~x,y,t !n~x,y,t !

>
ry~x,y,t !n~x,y,t !2ry~x,y2y0 ,t !n~x,y2y0 ,t !

y0
. ~7!

We choose 1/(cr0) and 1/@(12c)r0# for x0 and y0 where
1/(cr0) and 1/@(12c)r0# are the average headways of t
eastbound and northbound cars. We consider the t
dimensional traffic flow on the square lattice with the ho
zontal and vertical spacings: 1/(cr0) and 1/@(12c)r0#. The
lattice hydrodynamic model is described by the followi
difference equations:

rx, j ,m~ t1t!2rx, j ,m~ t !1tcr0@rx, j ,m~ t !uj ,m~ t !

2rx, j 21,m~ t !uj 21,m~ t !#50, ~8!

rx, j ,m~ t1t!uj ,m~ t1t!5cr0V„r j 11,m~ t !… ~9!

for the eastbound cars, and

ry, j ,m~ t1t!2ry, j ,m~ t !1t~12c!r0@ry, j ,m~ t !n j ,m~ t !

2ry, j ,m21~ t !n j ,m21~ t !#50, ~10!

ry, j ,m~ t1t!n j ,m~ t1t!5~12c!r0V„r j ,m11~ t !… ~11!

for the northbound cars, whererx, j ,m(t) andry, j ,m(t) are the
local densities of eastbound and northbound cars on site~j,m!
at time t.
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In the limit of c50 or 1, the two-dimensional lattice hy
drodynamic model reduces to the one-dimensional lattice
drodynamic model@36#.

The optimal velocity function is given by

V„r j ,m~ t !…5tanhS 2

r0
2

r j ,m~ t !

r0
2 2

1

rc
D 1tanhS 1

rc
D , ~12!

whererc is the inverse of the safety distance@25,28#. This
function has the turning point~inflection point! at r j ,m(t)
5r05rc . Generally, it is necessary that the optimal veloc
function has the following properties: it is a monotonica
decreasing function, it has an upper bound~maximal veloc-
ity!, and it has a turning point at the safety distance.

By inserting Eqs.~9! and ~11! into Eqs. ~8! and ~10!,
respectively, and adding Eq.~8! to Eq. ~10!, one obtains the
density equation

r j ,m~ t12t!2r j ,m~ t1t!1tc2r0
2@V„r j 11,m~ t !…

2V„r j ,m~ t !…#1t~12c!2r0
2@V„r j ,m11~ t !…

2V„r j ,m~ t !…#50, ~13!

wherer j ,m(t)5rx, j ,m(t)1ry, j ,m(t).
In the limit of c50 or 1, Eq.~13! reduces to the density

equation of the one-dimensional traffic flow.

III. SIMULATION

We carry out a simulation to study numerically the traf
behaviors in the two-dimensional lattice hydrodynam
model. We derive numerically the phase separation lines~co-
existing curves!. We compare the simulation result with th
analytical result in Sec. V.A priori it cannot be assumed tha
the lattice hydrodynamic model yields a jamming transiti
similar to the cellular automata. Therefore, simulation is c
ried out to validate two points.~1! First it has to be shown
that the model is capable of describing two-dimensional tr
fic dynamics and the jamming transition indeed occurs.~2!
Next the applicability of the nonlinear analysis has to
proved.

We sett as the unit time step. The boundary is period
Initially, the density is assumed to be distributed uniform
over space:r j ,m(0)5r05rc50.2. Then, the local densitie
rL/2,L/2(1) and rL/221,L/221(1) at sites (L/2,L/2) and (L/2
21,L/221) at timet51 are set as 0.1 and 0.3 whereL is the
system size. We study the traffic patterns for various val
of delay time. As a result, three types of traffic flow have
be distinguished:~1! a freely moving phase,~2! a coexisting
phase in which jams appear, and~3! a uniformly congested
phase. In Fig. 1, the time evolutions of traffic patterns a
shown when the disturbance at the center is added to
uniform initial state (r050.2), where the sensitivitya ~the
inverse of the delay time! is 1.0 and the system size is 14
3140. The regions with higher density than 0.2 are indica
by the gray color. The gray regions represent the jamm
traffic. The patterns~a! and ~b! indicate the time evolutions
of traffic patterns forc50.5 and 0.2. At early stage, jam
occur within a small region. In time, the jams spread to
whole system. Forc50.5 in which the density of eastboun
cars equals the density of northbound cars, the jams pro
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gate backward. The traffic jams are formed with the dia
nally striped patterns. Forc50.2 in which the density of the
eastbound cars is less than the density of the northbo
cars, the traffic pattern of jams exhibits the complex struct
but the jams propagate backward approximately in the d
onal direction. Figure 2 shows the time evolutions of traf
patterns on the single-horizontal road aty540 for the same
initial condition as Fig. 1. The patterns~a! and ~b! indicate
the time evolutions forc50.5 and 0.2. The jammed region
indicated by the gray propagate backward. Figure 3 sh
the density profiles obtained att56000 on the single-
horizontal road aty540 for the same initial condition as Fig
2. The profiles~a! and~b! indicate those forc50.5 and 0.2.
The regions of density higher than 0.2 represent the tra
jams and propagate backward. The jams are the den
waves. The density waves have the symmetric kink-antik
form after sufficiently long time. After sufficiently long time
the shapes of density waves do not change with time foc
50.5 but do change forc50.2.

Figure 4 shows the plots of density differencer(t)2r(t

FIG. 1. Time evolutions of traffic patterns fort540, 100, 200,
and 2000 when the disturbance at the center is added to the un
initial state (r050.2), where the system size is 1403140. The
regions with higher density thanr050.2 are indicated by the gra
color. The gray regions represent the jammed traffic.~a! The traffic
patterns fora51.0 andc50.5. ~b! The traffic patterns fora51.0
andc50.2.
-

nd
e
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c
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21) versus densityr(t) at a site of the system fort
56000– 10 000 fora51.0: ~a! c50.5 and~b! c50.2. The
plots ~a! and~b! correspond, respectively, to the traffic flow
~a! and ~b! in Fig. 3. The pattern~a! in Fig. 3 exhibits the
limit cycle ~a single closed curve! in the plot of Fig. 4. It
corresponds to the periodic traffic behavior. The pattern~b!
in Fig. 3 exhibits the dispersed plots around a closed loop
corresponds to the irregular traffic behavior. The points
the right and left ends represent, respectively, the st
within the traffic jams and within the freely moving phase

rm

FIG. 2. The time evolutions of traffic patterns on the horizon
road at y540. The jammed traffic with higher density thanr0

50.2 is indicated by the gray. The jammed regions propagate b
ward as the density waves.~a! a51.0 andc50.5. ~b! a51.0 and
c50.2.

FIG. 3. The density profiles obtained att56000 on the horizon-
tal road aty540 for a51.0 andr050.2. The density waves~traffic
jams! have the symmetric kink-antikink form.~a! c50.5. ~b! c
50.2.



is
o

th
th

,
el
lyt
te
d

no
a
-
in
re

ith

y-
s

ec-
s
sis.

lyti-

4860 PRE 59TAKASHI NAGATANI
In any case considering long-time evolution, only two d
tinct densities survive for the coexisting phase, depending
the sensitivity~the inverse of the delay time! and the fraction
c. Each density is the density of the transition points on
coexisting curve. Figure 5 shows the plots of densities at
transition points versus sensitivitya. The circles, triangles
and diamonds indicate the simulation results, respectiv
for c50.1, 0.2, and 0.5. The solid lines represent the ana
cal results in Sec. V. The simulation results are consis
with the analytical results. The phase separation line
creases as increasing fractionc for c<0.5. The apex of each
curve indicates the critical point. Above the critical point,
traffic jams occur. Figure 6 shows the plot of the critic
point versus fractionc. The circular points indicate the simu
lation result. The solid line indicates the analytical result
Sec. V. The simulation result agrees with the analytical
sult.

IV. LINEAR STABILITY ANALYSIS

We apply the linear stability method to Eq.~13!. We con-
sider the stability of the uniform traffic flow. The uniform
traffic flow is defined by such a state as a traffic flow w
constant densityr0 , constantx-directional velocityV(r0),
and constanty-directional velocityV(r0). Equation~13! has
the solution of the uniform steady state:

r j ,m~ t !5r0 , uj ,m~ t !5V~r0!, and n j ,m~ t !5V~r0!.
~14!

FIG. 4. The plots of density differencer(t)2r(t21) vs density
r(t) for t56000– 10 000 wherea51.0 andr050.2. ~a! c50.5. ~b!
c50.2.
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Let yj ,m(t) be a small deviation from the uniform stead
state flow:r j ,m(t)5r01yj ,m(t). Then, the linear equation i
obtained from Eq.~13!,

yj ,m~ t12t!2yj ,m~ t1t!1tc2r0
2V8~r0!

3@yj 11,m~ t !2yj ,m~ t !#

1t~12c!2r0
2V8~r0!@yj ,m11~ t !2yj ,m~ t !#50,

~15!

whereV8(r0)5@dV(r)/dr#ur5r0

FIG. 5. Phase separation lines in the (r,a) plane, wherer is the
density,a(51/t) is the sensitivity~the inverse of the delay time!,
andrc50.2. The circles, triangles, and diamonds indicate, resp
tively, the simulation results forc50.1, 0.2, and 0.5. The solid line
represent the analytical results obtained by the nonlinear analy

FIG. 6. The plot of the critical points vs fractionc. The circles
indicate the simulation result. The solid line represents the ana
cal result obtained by the nonlinear analysis.
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Since the density wave propagates in both negativex and
y directions with equivalent propagation velocity, we expa
yj ,m(t) as follows:yj ,m(t)}exp$ik(j1m)1zt%. The following
equation ofz is derived:

e2zt2ezt1t$c21~12c!2%r0
2V8~eik21!50, ~16!

whereV85V8(r0).
By expandingz with z1( ik)1z2( ik)21¯ , the first-order

and second-order terms ofik are obtained,

z152$c21~12c!2%r0
2V8,

~17!

z252
3

2
t$c21~12c!2%2~r0

2V8!22
$c21~12c!2%

2
r0

2V8.

If z2 is a negative value, the uniform steady-state flow
comes unstable for long-wavelength modes. Whenz2 is a
positive value, the uniform flow is stable. One obtains
neutral stability condition

t52
1

3$c21~12c!2%r0
2V8

. ~18!

For small disturbances of long wavelengths, the uniform tr
fic flow is unstable if

t.2
1

3$c21~12c!2%r0
2V8

. ~19!

The derivativeV8 of optimal velocity has the minimal valu
at turning point r05rc . If t,tc@tc521/3$c21(1
2c)2%r0

2V8(rc)51/3$c21(12c)2%#, the uniform flow is al-
ways stable irrespective of density. We find that there i
critical point atr5rc andt5tc . Whenc50 or 1, the criti-
cal point and the neutral stability line are consistent w
those in the one-dimensional traffic model@36#. The dotted
lines in Fig. 7 show the neutral stability lines forc50.0, 0.1,
0.2, 0.3, and 0.5. The apex of each curve indicates the cri
point. Above each curve, the two-dimensional traffic flow
stable and the density wave~traffic jam! does not appear
Below each curve, the traffic flow is unstable and the den

FIG. 7. The phase diagrams in the (r,a) plane obtained by the
TDGL equation forc50.0, 0.1, 0.2, 0.3, and 0.5. The solid an
dotted lines indicate the phase separation lines and the spin
curves. The apex of each curve indicates the critical point.
d
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wave appears. As fractionc increases (c,0.5), the critical
points and the neutral stability curves decrease.

V. TDGL EQUATION

We now consider the traffic behavior of long-waveleng
modes on coarse-grained scales. The simplest way to
scribe the behavior of long-wavelength modes is the lo
wave expansion. We consider the slowly varying behavio
long wavelengths near the critical point (rc ,tc). We extract
slow scales for space variablesj,m, and time variablet
@28,37#. For 0,«!1, we therefore define the slow variable
X andT:

X5«~ j 1m1bt! and T5«3t, ~20!

whereb is a constant determined later. Here we consider
density wave propagating in the diagonal direction. The
agonally propagating density wave is observed in our sim
lation. We set the density as

r j ,m~ t !5rc1«R~X,T!. ~21!

By expanding Eq.~13! to the fifth order of« with the use of
Eqs.~20! and ~21!, one obtains the following nonlinear pa
tial differential equations:

«2~b1grc
2V8!]XR1«3S 3b2t

2
1

grc
2V8

2 D ]X
2R

1«4F]TR1S 7b3t2

6
1

grc
2V8

6 D ]X
3R1

grc
2V-

6
]XR3G

1«5F3bt]T]XR1S 5b4t3

8
1

grc
2V8

24 D ]X
4R

1
grc

2V-

12
]X

2R3G50, ~22!

whereV85@dV(r)/dr#ur5rc
, V-5@d3V(r)/dr3#ur5rc

, and

g5c21(12c)2. Here we used the expansions shown in t
Appendix.

By takingb52grc
2V8(rc), the second-order term of« is

eliminated from Eq.~22!. We consider the neighborhood o
the critical pointtc :

t

tc
511«2, ~23!

wheretc521/3grc
2V8(rc)51/3g. Equation~22! is rewrit-

ten

«4]TR5«4
g~2rc

2V8!

27
]X

3R2«4
grc

2V-

6
]XR3

2«3
g~2rc

2V8!

2 S t

tc
21D ]X

2R2«5
g~2rc

2V8!

54
]X

4R

1«5
grc

2V-

12
]X

2R3. ~24!

dal
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By transforming variablesX andT to variablesx5«21X and
t5«23T, and takingS(x,t)5«R(X,T), Eq. ~24! is rewritten
as follows:

] tS5
g~2rc

2V8!

27
]x

3S2
grc

2V-

6
]xS

3

2
g~2rc

2V8!

2 S t

tc
21D ]x

2S2
g~2rc

2V8!

54
]x

4S

1
grc

2V-

12
]x

2S3. ~25!

By adding termg(2rc
2V8)(t/tc21)]xS on both left and

right sides of Eq.~25! and performing the transformationt1

5t and x15x1g(2rc
2V8)(t/tc21)t in Eq. ~25!, one ob-

tains

] t1
S5S ]x1

2
1

2
]x1

2 D Fg~2rc
2V8!

27
]x1

2 S

1g~2rc
2V8!S t

tc
21DS2

grc
2V-

6
S3G . ~26!

We define the thermodynamic potential

f~S![2
g~2rc

2V8!

2 S t

tc
21DS21

grc
2V-

24
S4. ~27!

By rewriting Eq. ~26! with Eq. ~27!, one obtains the time
dependent Ginzburg-Landau~TDGL! equation:

] t1
S52S ]x1

2
1

2
]x1

2 D dF~S!

dS
,

with F~S![E dx1S g~2rc
2V8!

54
~]x1

S!21f~S! D ,

~28!

wheref(S) is given by Eq.~27!.
The TDGL equation~28! has two steady-state solutions

addition to a trivial solutionS50: the one is the uniform
solution

S~x1 ,t1!56F6~2rc
2V8!~23grc

2V8t21!

rc
2V- G1/2

, ~29!

and the other is the kink solution

S~x1 ,t1!56F6~2rc
2V8!~23grc

2V8t21!

rc
2V- G1/2

3tanhF S 27

2
~23grc

2V8t21! D 1/2

~x12x10
!G ,

~30!

wherex10
is a constant. Equation~30! represents the coex

isting phase which consists of a low density phase~freely
moving phase! and a high density phase~congested phase!.
One can obtain the coexisting curve, the spinodal li
and the critical point by differentiating thermodynamic p
tential ~27! with order parameterS. The coexisting curve is
given by the condition

]f

]S
50 and

]2f

]S2.0. ~31!

From Eq.~31!, one obtains the coexisting curve in terms
the original parameters

rco5rc6F6~2rc
2V8!~23grc

2V8t21!

rc
2V- G1/2

. ~32!

The spinodal line is given by the condition

]2f

]S2 50. ~33!

From Eq.~33!, one obtains the spinodal line in terms of th
original parameters

rsp5rc6F2~2rc
2V8!~23grc

2V8t21!

rc
2V- G1/2

. ~34!

The critical point is given by the condition

]f

]S
50 and

]2f

]S2 50. ~35!

From Eq.~35!, one obtains the critical point in terms of th
original parameters

r5rc and tc5
1

3g~2rc
2V8!

. ~36!

Figure 7 shows the phase diagram in the (r,a) plane where
rc50.2, 2rc

2V851, and rc
6V-52. Each solid curve indi-

cates the coexisting curve given by Eq.~32!. Each dotted line
indicates the spinodal line given by Eq.~34!. The apex of
each curve indicates the critical point. In the region with
the coexisting curve, the freely moving phase coexists w
the congested phase. The intermediate regions between
coexisting curve and the spinodal line represent the m
stable regions.

Generally, the jamming transition is the first-order pha
transition below the critical point. The metastability o
served in the traffic flow model corresponds to the spino
decomposition in the conventional first-order phase tran
tion.

VI. MKdV EQUATION

We derive the modified Korteweg–de Vries equati
~MKdV ! equation from Eq.~13!. We show the connection
between the MKdV equation and the TDGL equation. Sim
larly to the derivation of the TDGL equation, we consider t
slowly varying behavior at long wavelengths near the criti
point. We extract slow scales for space variablesj,m, and
time t. We obtain Eq.~22!. By inserting 23grc

2V8t21
5t/tc21[«2 into Eq. ~23!, one obtains
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«4]TR5«4
g~2rc

2V8!

27
]X

3R2«4
grc

2V-

6
]XR3

2«5
g~2rc

2V8!

2
]X

2R2«5
g~2rc

2V8!

54
]X

4R

1«5
grc

2V-

12
]X

2R3. ~37!

In order to derive the regularized equation, we make
following transformations:

T85
g~2rc

2V8!

27
T and R~X,T!5S 22rc

2V8

9rc
2V- D 1/2

R8~X,T8!.

~38!

One obtains the regularized equation

]T8R85]X
3R82]XR832«@ 27

2 ]X
2R81 1

2 ]X
4R82 1

2 ]X
2R83#.

~39!

If we ignore theO(«) term in Eq.~39!, it is just the MKdV
equation with a kink solution as the desired solution,

R08~X,T8!5Ap tanhAp/2~X2pT8!. ~40!

Next, assuming thatR8(X,T8)5R08(X,T8)1«R18(X,T8), we
take into account theO(«) correction. In order to determin
the selected value of the propagation velocityp for the kink
solution ~40!, it is necessary to satisfy the solvability cond
tion

~R08 ,M @R08# ![E
2`

1`

dX R08M @R08#50, ~41!

where M @R08#5 27
2 ]X

2R81 1
2 ]X

4R82 1
2 ]X

2R83. By performing
the integration, we obtain the selected velocityp527. One
obtains the solution

R~X,T!5S 6~2rc
2V8!

rc
2V- D 1/2

tanhS 27

2 D 1/2

@X2g~2rc
2V8!T#.

~42!

By replacing variablesX andT with original variablesj, m,
and t, one obtains the solution

r j ,m~ t !5rc6F6~2rc
2V8!~23grc

2V8t21!

rc
2V- G1/2

3tanh@$ 27
2 ~23grc

2V8t21!%1/2$ j 1m2grc
2V8

3~213grc
2V8t!t%#. ~43!
e

The solution~43! agrees with the solution~30! obtained from
the TDGL equation. The kink solution represents the co
isting phase which consists of the freely moving phase~with
low density! and the congested phase~with high density!.
The traffic jam seems to be static from the point of view
the backward moving frame with the jam propagation velo
ity. Thus, the jamming transition can be described by b
the TDGL equation with a nontraveling solution and t
MKdV equation with a propagating solution.

VII. SUMMARY

We have proposed a lattice hydrodynamic model for tw
dimensional traffic flow. We have investigated the jammi
transition between the freely moving phase and the jamm
phase numerically and analytically. In the numerical simu
tion, we have shown that the jamming transition occurs w
increasing density. We have found that there is a criti
point. The critical point decreases as increasing fraction
the eastbound cars.

We have applied the linear stability theory and nonline
analysis to two-dimensional traffic flow. We have found th
the jamming transition is described by the time-depend
Ginzburg-Landau equation. The phase separation lines,
spinodal lines, and the critical point are calculated by the
of the thermodynamic potential. The critical point, the sp
odal lines, and the phase separation lines are definitely
ferent from those of one-dimensional traffic flow.

APPENDIX

In this appendix, we present the expansions of each t
in Eq. ~13! to fifth order of«,

r j ,m~ t1t!5rc1«R1«2bt]XR1«3
~bt!2

2
]X

2R

1«4
~bt!3

6
]X

3R1«4t]TR1«5
~bt!4

24
]X

4R

1«5bt2]T]XR, ~A1!

r j ,m~ t12t!5rc1«R1«22bt]XR1«3
~2bt!2

2
]X

2R

1«4
~2bt!3

6
]X

3R1«42t]TR1«5
~2bt!4

24
]X

4R

1«54bt2]T]XR, ~A2!

r j 11,m~ t !5rc1«R1«2]XR1
«3

2
]X

2R1
«4

6
]X

3R1
«5

24
]X

4R.

~A3!

We expand the optimal velocity function at the turning poi

V~r j ,m!5V~rc!1V8~rc!~r j ,m2rc!1
V-~rc!

6
~r j ,m2rc!

3,

~A4!
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V~r j 11,m!5V~rc!1V8~rc!~r j 11,m2rc!1
V-~rc!

6

3~r j 11,m2rc!
3, ~A5!

V~r j 11,m!2V~r j ,m!5V8~rc!S «2]XR1
«3

2
]X

2R

1
«4

6
]X

3R1
«5

24
]X

4RD
1

V-~rc!

6
@«4]XR31«5 1

2 ]X
2R3#.

~A6!
d

ug

Ito

. E
V~r j ,m11!2V~r j ,m!5V8~rc!S «2]XR1
«3

2
]X

2R

1
«4

6
]X

3R1
«5

24
]X

4RD
1

V-~rc!

6
@«4]XR31«5 1

2 ]X
2R3#.

~A7!

By inserting Eqs.~A1!–~A7! into Eq. ~13!, one obtains Eq.
~22!.
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