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Soliton and kink jams in traffic flow with open boundaries
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Division of Thermal Science, College of Engineering, Shizuoka University, Hamamatsu 432-8561, Japan
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Soliton density wave is investigated numerically and analytically in the optimal velocity madeér-
following mode) of a one-dimensional traffic flow with open boundaries. Soliton density wave is distinguished
from the kink density wave. It is shown that the soliton density wave appears only at the threshold of
occurrence of traffic jams. The Korteweg—de VrigslV) equation is derived from the optimal velocity model
by the use of the nonlinear analysis. It is found that the traffic soliton appears only near the neutral stability
line. The soliton solution is analytically obtained from the perturbed KdV equation. It is shown that the soliton
solution obtained from the nonlinear analysis is consistent with that of the numerical simulation.
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PACS numbgs): 05.40—a, 47.55-t, 89.40+k

[. INTRODUCTION whereX and T are space and time variables. Its solution is
described by
Recently, traffic problems have attracted considerable at-
tention[1-30]. Uniform traffic flow is stable at low density. AT
When the car density is higher than the critical density, the R(X,T)=Asecﬁ[ V(A/12) (X— —)} 2
uniform traffic can be unstable, with localized regions of
high density and low velocity spontaneously appearing.
These density waves preserve their shape and move backhereA is the amplitude.
ward with constant speed; they correspond to the “phanOn the other hand, the kink is a solution of the modified KdV
tom” traffic jams, which appear on a highway for no appar- equation:
ent reason.
Kerner and Konhauser have found the single-pulse den-

. . L ou ; . dR R IR®
sity wave in numerical simulations of the hydrodynamic traf- —— —o3+—=0. 3
fic model[22]. The profile of the single-pulse density wave Jr ox> X

is shown in Fig. 1b). They have applied the linear stability

analysis to the traffic model but it has not been analyzed byts solution is described by

the nonlinear analysis method. Lately, Kurtze and Hong have

derived the Korteweg-de VrigKdV) equation from the hy- )

drodynamic model by the use of the nonlinear analysis R(X,T)=AtanK (1/2)A(X—~AT)}. (4)
method. They have concluded that the single-pulse density

wave is the solitorj26]. The soliton solution of the density Thus, the kink solution is definitely different from the soliton
wave has the shape shown in Figc)l However, the soliton  solution. The kink soliton has the plateau within the density
solution in Fig. 1c) is not consistent with the single-pulse wave shown in Fig. (). The propagation velocity of the
density wave in Fig. (). It is conjectured that the single- kink is definitely different from that of the soliton.
pulse density wave found by Kerner and Konhauser is not until now, the soliton density wave predicted by Kurtze
“soliton” but is similar to the asymmetric kink-antikink and Hong is not observed in the traffic simulations. There is
density wave. On the other hand, Komatsu and Sasa havg important question whether or not the soliton density
derived the modified KdV equation from the car-following wave appears in the traffic simulation. If the solitonlike den-
model[27]. They have showed that the density wave has th&ijty wave is observed in the simulation, it should be com-
kink-antikink shape shown in Fig.(d. By comparing the pared with the analytical solution of the traffic model.
analytical solution with the simulation result, they have con- |n this paper, we carry out the computer simulation for the
firmed that the phantom traffic jam is the symmetric kink- optimal velocity model with open boundaries. We calculate
antikink density wave. the fundamental diagrafthe traffic current against density
The above observations have brought to our attention thghen, we study the condition such that a density wave ap-
need for distinguishing between the soliton density wave angears when a car decelerates instantly. We show that the
the kink-antikink density wave. We describe briefly the soli- sgliton density wave appears only near the threshold between
ton and kink soltions in terms of the nonlinear wave equathe jam and no jam and when the strength of deceleration is
tions. The soliton is a solution of the KdV equation: higher than the threshold, the kink-antikink density wave ap-
pears. We give the nonlinear analysis for the optimal veloc-
3 ity model. We obtain the soliton solution of the KdV equa-
ﬁ_ EJF R£=O 1) tion. We compare the analytical solution with the simulation
aT  axX3  Tax result.
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FIG. 2. The plot of the traffic current against the entrance den-
sity for sensitivitya=0.75, 1.00, 1.25, and 2.00. The circles, tri-
angles, squares, and white diamonds indicate the simulation result.
The solid line indicates the analytical result.

Density

— wherex; has the order of the safety distance gy, (the
Position maximal velocity=2.0. The optimal velocity is a function
®) having the following properties: a monotonically increasing
function with an upper bountmaximal velocity. The opti-
mal velocity function has a turning poifinflection poinj at
Ax,=Xx¢:V"(x.)=0. It is important that the optimal velocity
function has a turning point. Otherwise, one cannot derive
the modified KdV equation giving traffic jams in terms of a
kink density wave.

The above optimal velocity model has been studied by
computer simulation only for the periodic boundary condi-
tion. It has been shown that the kink density watmffic
jam) appears below the critical poiaf,=2.0. We could not
find the soliton density wave for the periodic boundary con-
dition. Therefore, we perform computer simulation for the

(©) optimal velocity model under the open boundary condition.
, i i , We consider the one-dimensional road with the entrance and
_FIG. 1. The schematic profiles of traffic density waves o oyit \When a car reaches the exit, its car is removed from
(jams. (@ The symmetric kink-antikink density waveb) the = 4o 1,24 Then, the optimal velocity of the front car nearest
asymmetric kink-antikink density wave, arid) the soliton density . . . .
wave. to the exit becomes th_e maximal velocity 2._0 since there are
no cars in the front of its car. The front car is accelerated by
the difference between the maximal and present velocities. If
the distance between the entrance and the last car nearest to
. . . the entrance comes to be equal to the prescribed value, a new

We describe the °p“”f‘a' velocny model proposed bycar is introduced at the entrance on the road. The prescribed
Bandoet al.[5]. The equation of motion of caris value is given by Id;—1 wherep; is the car density at the
entrance. We define the relationship between the headway
X”=a1 V(AX,)— %] (5) and the density as following:Ax=1/p—1. If one adopts
dt? “oodt) Ax=1/p, the density is larger than 1 farx<<1 and diverges

in the limit Ax—0. Therefore, we adopt the relationship
wherex, is the position of can, Ax,(=Xn+1—X,) is the  Ax=1/p—1 in order to normalize the density. This relation
headway of cam, anda is the sensitivity. The inverse of corresponds to a car length of 1. Equati@ is calculated
sensitivity a corresponds to the delay time in the other car-numerically by the use of the fourth-order Runge-Kutta
following models[28]. V(AX,) is the optimal velocity. Car method where the time interval is 1/128. Figure 2 shows the
nis controlled in such a way that the car velocity adjusts theplot of the traffic current as a function of the density at the
optimal velocity V(Ax,) depending upon headway. This entrance for various values of sensitivity. Here we set
model is a typical one of the car-following models. This =3.0. For entrance density lower than 0.2, the current is on
model is known as the optimal velocity model. the single curve. For larger sensitivity than the critical sen-

The optimal velocity is given by sitivity a,=2.0, the current is on the same curveaas?2.0.

After the current reaches the maximal value, the current is
V(AX,)=tanh(Ax,—X.) +tanhx.), (6) constant for entrance densities higher than 0.2. For sensitiv-
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II. SIMULATION AND RESULT
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FIG. 3. The density profile obtained &t 1000 for sensitivity 3.00
a=1.0 and entrance densip;=0.5. 0.5 1.0 1.5 2.0 2.5

Sensitivity
ity lower than 2.0, after the current reaches the maximal
value, the current decreases, and becomes a constant valueFIG. 5. The plot of the headway at the road center against the
with increasing entrance density. The constant value of cursensitivity. The circles and triangles indicate the headwayp,of
rent depends on the sensitivity far:2.0 and decreases with =0-5 andp;=0.2. The solid lines indicate the phase separation line
sensitivity. It has been shown that the macroscopic model@nd the neutral stability line.

have the same qualitative behavior as the optimal velocity, . - '
model[31,32. If no jams appear, the velocity in the steady density at the road center for that in Fig. 2. The traffic current

state is equal to the optimal velocity. In the traffic flow with- !> O the curve of Eq(7). Traffic relaxes to free equilibrium
out jams, the current is given by traffic regardless of the density at the inflow boundary. We

study how headway near the road center changes with the
Q=V(AX,)/(Ax,+1). (7)  sensitivity for the cases of the entrance densities 0.5 and
p1=0.2. Figure 5 shows the plot of the headway at the road

The current of Eq(7) is indicated by the solid curve in Fig. center against the sensitivity. The circles and _triangles !ndi-
2. For densities lower than 0.2, the current obtained from th€ate the headways @f; = 0.5 andp; = 0.2 for various sensi-
simulation agrees with Eq7). By differentiating Eq.(7)  tivities. The phase separation line and the neutral stability
with headway and taking the derivative to be zero, we findine (obtained from the nonlinear analysis and linear stability
that the maximal current occurs at density 0.2. The densitgnalysis[5]) are shown by the solid lines. For the high den-
wave does not appear at any density for the open boundariesity p1=0.5, the headway at the road center increases with
On the other hand, the density wave occurs at high densitjlecreasing sensitivity. The current is less than the maximal
for the periodic boundary when a small disturbance is addegurrent. The headway is along and above the phase separa-
to the system. tion line. The density wavéraffic jam) does not occur even
Figure 3 shows the typical headway profile obtained afteif the disturbances are added to this steady state. por
t=1000 fora=1.0 andp,;=0.5. Except for the neighbor- =0.2 yielding the maximal current, the headway at the road
hood of the entrance and exit, the headway is a constant areg¢nter remains the constant 4.0 with decreasing sensitivity
the value equals 5. The headway 5 comes to the densityntil it crosses the neutral stability line. If the disturbances
0.166--, calculated in terms of density. For entrance densitjare added to the traffic flow near the crossing point, the den-
larger than 0.2, the density near the center of the road is lessity wave (traffic jam) can occur. Except for the neighbor-

than 0.2. In Fig. 4, we plot the traffic current against thehood of the crossing point, the density wave does not occur
even if the disturbances are added. The region between the

0.50 phase separation line and the neutral stability line represents
the metastable traffic flof80]. When the sensitivity is larger
than 2.0, the headway at the road center is all the same 4.0.
This explains why the traffic current is the maximal current
for the sensitivity larger than 2.0 and density higher than 0.2.
We study how the maximal current varies with the safety
distancex. (headway at the turning point of the optimal ve-
®a=0.75 locity function). As a result, the headway at maximal current
4 a=1.00 nearly equals the headway at the inflection poirit. The
ma=1.25 simulation result is consistent with the analytical result.
o a=2.00 We study whether or not density waves appear when the
disturbances are added. We add the disturbances as follow-
0.00 — — ing: after the traffic flow reaches the steady state, the lead car
0.00 0.20 0.40 0.60 0.80 1.00 closest to the exit is decelerated to the prescribed low veloc-
Density ity during ten time steps where the unit time step is one. We
call this the slowdown velocity for the prescribed low veloc-
FIG. 4. The plot of the traffic current against the density at theity. For entrance density higher than 0.2, the density wave
road center for that in Fig. 2. propagating sufficiently long time does not appear even if the

0.40 |
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FIG. 6. The region map at headway=4.0. The circles indi-
cate the points at which the soliton density wave occurs. The re-
gions I, Il, and Il represent, respectively, the spontaneous jam, the
kink density wave, and no jam.
>

sensitivity is less than the critical value 2.0. The density g
wave formed at early stage disappears in time. For the en- & © 660 900

trance density, = 0.2 yielding the maximal current, the den-
sity wave appears when the sensitivity is between the phase
separation line and the neutral stability line and the large

Position

®)

disturbance is added. The region m@pe plot of the slow-
down velocity v against the sensitivijyis shown in Fig. 6
where headwayx is 4.0. The circles indicate the soliton

FIG. 8. The density profilda) at t=1300 and the space-time
evolution (b) of headway fora=1.0, v4=1.1170. The soliton den-
sity wave crosses over the kink density wave.

density wave. The regions I, I, and Il represent, respec-
tively, the spontaneous jam, the kink density wave, and NGine petween the regions Il and Iil. In the region I, the
jam. The soliton density wave appears only on the boundargensity wave formed at early stage disappears in time. When
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FIG. 7. The density profilda) at t=1300 and the space-time
evolution (b) of headway fora=1.0, vs=1.1175. The typical soli-
ton density wave is observed.

the sensitivity is between 0.84 and 1.50, the traffic flow is
metastable. The soliton density wave is unstable even if per-
turbations are very small. All perturbations will either de-
velop to the kink-antikink density waves or dissolve in the
course of time. It would also mean that real stable localized
traffic clusters are never the KdV soliton. As a result, it is
concluded that the soliton density wave is observed on the
boundary line between the regions of the kink density waves
and of the dissolving density waves. When the sensitivity is
less than 0.84, the traffic flow is unstable and the kink den-
sity wave is formed even if the disturbances are small. The
typical space-time evolutions of headway are shown in Figs.
7, 8, and 9. Figure 7 shows the space-time evolufmnof

Position

FIG. 9. The space-time evolution of headway o= 1.0, vy
=1.1180. The density wave disappears in time.
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headway betweet=500 andt= 1500 and the headway pro- as. a;—a as. ag

file (a) att=1300 fora=1.0, vs=1.1175, and,=3.0. The 2(k)= 5 ik+ —— k= 5ik?— 2k*+ O(k®). (12
typical soliton density wave is observed. It propagates

backward with the constant velocity. Figure 8 shows th
space-time evolutiorib) of headway betweet=500 andt
=1500 and the headway profil@ at t=1300 fora=1.0,
vs=1.1170, an.= 3.0. The density wave propagates back-

eSuppose the headway of uniform traffic is near the neutral
stability point. We quantify this by writing

ward. It crosses over the kink density wave from the soliton V/ (AX(®) — (8= da) = % _a(8s

density wave. The propagation velocity of soliton is less than 2 2 2\a '

that of the kink density wave. The width of the kink-antikink

pulse increases with time but the height remains a constant. alag 5

Figure 9 shows the space-time evolution of headway be- 32" 1‘ =pBe”, (13

tweent=500 andt=1500 fora=1.0, v4=1.1180, andx,

=3.0. At the early stage, the soliton density wave is formedwhere(‘3 is an arbitrary parameter anga/2.

but disappears in time. Thus, the soliton density wave ap- We have introduced as a small scaling parameter. We

ears only near the boundary line between the regions Il and "". ) .
ﬁl y y g consider the slowly varying behavior at long wavelengths

When a perturbation is added to a uniform traffic flow in near the neutral stability line. We wish to extract slow scales
- Jgg space variablen and time variablg. We determine the
ar%:alings ofn andt. The real part of Eq(12) contains both a

occur at the early stage. Then, both waves propagate forw. Lo : .
and dissolve in 'Elhe c?)urse of time as the c%m?)rgssion wavf urth-order dissipation term and a negative diffusion term.
~rom the balance of the two termis,scales akxe. This

interferes with the expansion wave. The phenomenon d ds to th i lati "1 Th i tis d
pends little on the location of the perturbation if the location eads fo the scaling relatiamxe . 1he scaling ott IS de-
termined by the lowest-order imaginary term in Etp). It is

is far from the exit. However, if a perturbation near the exit " by a di ion t K2 since th tion t
is added to the metastable traffic flow under the open bound?!VEN DY & dISPETSION term ok~ sINce the propagation term
f ik is eliminated by shifting to a moving coordinate system.

ary condition, the expansion wave never appears and onl 3 .
the compression wave propagates backward. In the course pus,t scales asoce = For O<8<1’_ we, therefore, define
time, the compression wave develops to the kink-antikiniN€ Slow variable andT [26-30,33:
density wave.

X=¢-(n+bt) and T=&5. (14)
IIl. NONLINEAR ANALYSIS .

We rewrite Eq.(5) as follows:
We derive the KdV equation describing the soliton den-

sity wave from the optimal velocity model. The linear stabil- d?Ax,  dAx,
ity analysis for the optimal velocity model has been done by W+a T —a[V(AX,11)—V(AX,)]=0. (15
Bando et al. [5]. For later convenience, we carry out the
linear stability analysi$5,27]. Equation(5) has the follow-
ing steady-state solution:x{¥=Axn+V(Ax®)t where
Ax© is the constant headway. Lgt, be a small deviation
from the uniform steady-state ﬂow:xn=x§1°)+yn. Then,
the linear equation is obtained from E®),

We expect that an amplitude equation would balance the
linear growth term of ordes*A with a stabilizing nonlinear
term of orderA3. Thus, we expect that the disturbance satu-
rates at a size of order’. We, therefore, set the headway as

2 Ax,=AxO+ e?R(X,T). (16)

d<y,
dt?

d
=a V’(Ax<°>)Ayn—% , (8)

By inserting Eq(16) into Eq.(15) and expanding to the sixth
order of e, one obtains the following nonlinear differential

where V' (Ax(9)=dV(Ax)/dAxX|sx—ax©@. By expanding equation:

yncexpikn+zt), the following equatiion ot is derived:

2+az—aV' (Ax?)(e*—1)=0. © 3 L IR L, aV'| PR
ea(b—V )0X+8 b 5 | ax?
From Eq.(9), one obtains the neutral stability condition: . 3
+g%a ﬁ_v_ﬁ_vﬁRﬁ
a;=2V'(Ax®). (10) EAIT 6 ax3 X
2 1 94 " 12p2
The uniform traffic flow with headway x(®) and velocity 15 2p IR _ ﬂa_i_ av' R Rz}: , 17)
V(Ax) is stable if the following condition is satisfied: aXoT 24 oX* 4 X
a>2V'(Ax?). (1)  where V' =dV/dAX|sy—ax©@ and V" =d?V/dAX?| xy— ax©)

and we used the expansions shown in the Appendix.
By expanding Eq(9) with ik near the neutral stability point, By takingb=V’, the third-order term of is eliminated.
one obtains By inserting Eq.(13) into Eq.(17), one obtains
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IR V' R IR V'2 aVv') ¢'R
853 o _\/D__ +86 -
JT 6 X IX 3 24/ x*
+ 8V’ &2R+ \VAAVA avr) 7R =0 18
BV %z 4 | oxZ | (18
where we used
I°R Vv &4R+V” 02R2+O
aXaT 6 axd "2 axz TOe).

In order to derive the regularized equation, we make the

following transformations:

T=\/(V’/6|g|§) " X=—\/(V’/6|g|)X’,
lal _,
and R_WR , (19

whereg is a negative constant. With the use of EtP), one

obtains the regularized equation,
. 0 ST aR’+a3R'+R,aR’
ey V(IO G+ Gs TR G
+e® ¢’ Vv’ i ,+2 V-2 "R
v | AV axe PG V' g ks
+ A a) IR = 20
[¢] 2 oxz |~ (20)

If one ignores the(£®) terms in Eq.(20), it is just the KdV
equation with a soliton solution as the desired solution,

(21)

-5
(A112)| X' = 2T

Ro(X', T")=Aseh?

Amplitude A of soliton solutions of the KdV equation is a
free parameter. The perturbation ter@$s®) of perturbed
KdV equation(20) select a unique member of the continuous
family of KdV solitons.

Next, assuming that R'(X',T)=Ry(X',T)
+eRy(X',T"), we take into account th®(e) correction. In
order to determine the selected value Affor the soliton
solution(21), it is necessary to satisfy the solvability condi-
tion,

(RyMIRG)= | axXRMIRGI=0, (22

whereM[R}] is the O(&®) term of Eq.(20).

By performing the integration, one obtains the selected

value

14v’

A= SR (23
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FIG. 10. The plot of the headway against the position within the
soliton density wave. The circle, triangle, square, and diamond
points indicate, respectively, the simulation resultder0.90, 0.95,
1.00, and 1.10. The analytical results are represented by the solid
curves.

!

14V' |a
A0 T TS 2
AX,=AX +3V” a 1|set
a
1‘455‘1\
x| V(7]agla—1|/3) | n+ 1+ —5— V't
(24)

We show the analytical result in Fig. 10. The solid curves
indicate, respectively, the plots of the headway against the
position for sensitivitya=0.90, 0.95, 1.00, and 1.10. The
circle, triangle, square, and diamond points indicate, respec-
tively, the simulation result foa=0.90, 0.95, 1.00, and 1.10.
The analytical results are in good agreement with the simu-
lation results near the neutral stability point. Figure 11 shows
the plot of the propagation velocity of soliton against sensi-
tivity. The solid curve indicates the analytical result. The
circles indicate the simulation result. The simulation result
agrees with the analytical result near the neutral stability
point.
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FIG. 11. The plot of the propagation velocity of soliton against

By rewriting each variable to the original one, one obtainssensitivity. The solid curve represents the analytical result. The

the soliton solution of the headway:

circles indicate the simulation result.
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For comparison, we shortly describe the derivation of the IV. SUMMARY
modified KdV equation of the kink density wave. The de-
rivative V' of the optimal velocity has the maximal value at
the turning pointAx,=Ax.. Therefore, in Eq(10), there

We have investigated the traffic flow for the open bound-
ary condition. We have found that the traffic current saturates

exists a critical value o, denoted b Above the critical at the maximal current and no jam appears without distur-

oint, the jammin tran:sition neve?agécurs irrespectivel Ofbances. We have shown that when the slowing down larger
point, J 9 . PECUVELY Olipan the threshold occurs, the two types of traffic jams ap-
density. From the parabolic form of the neutral stability line

o P : ear: one is the soliton density wave appearing on the thresh-
near the critical point, it is expected that the amplitude of the ; . :
density wave scales @<e [27]. We set the headway as old and the other is the kink density wave. We have analyzed

the optimal velocity model and derived the KdV equation

near the neutral stability line. We have obtained the soliton
solution analytically. We have shown that the simulation re-
sult is consistent with the analytical result of the soliton den-
sity wave.

We note that the kink density wave is obtained by expanding To our knowledge, until now, the soliton density wave

the headway “around the critical point” and the soliton den- has not been distinguished with the kink density wave. In the
sity wave is derived by expanding the headway “near thditerature of traffic, the kink density wave has been confused
neutral stability line.” By inserting Eq(25) into Eq. (15) with the soliton density wave. We have clarified the differ-

and expanding to the fifth order ef one obtains the modi- ence between the soliton and kink density waves.

fied KdV equation with the perturbed term. Finally, one ob-
tains the kink solution of the headway:

AX,=AX.+eR(X,T). (25)

APPENDIX

In this appendix, we give the expansions of each terms in
Eq. (15) to sixth order ofe.

Axy=Ax.*+\(BV' (Axy)[a./a— 1[/[V"(Ax)])

X tanh v(5]a./a—1]/2) dAx JR 4R

Neersiz oy R o8 o

5|a
Xyn+ 1—6 g—l‘)V’(AXC)t]}, (26)
d®Ax, , ,oR 6. R
g "¢ b X2 +2¢ b(?X(?T' (A2)

wherea, is the value 2.0 of sensitivity at the critical point
andV'(Ax.) is the derivative of optimal velocity function at R 1 R 1 AR
the critical point. The modified KdV equation is derived near 0, 2 3 4 5
the critical point @.,Ax.) [27]. However, the kink density Axp1=AX?+e"Rte x e o aEte e e
wave solutions agree with the simulation result far from the .
critical point[27—-30. The kink-antikink density wave ob- +361 IR (A3)
served in our simulation of Sec. Il looks similar to the modi- 24 gx*’
fied KdV solution. On the other hand, the KdV equation
describing the soliton is derived only near the neutral stabil- R 1 2n
ity line. The KdV equation has been derived from the hydro- ,d , 9
dynamic model by Kurtze and Honl@6]. However, they V(AXns) = V(Axg) =V WJ“SAPEV axZ
have not been compared with the simulation result. They 3
have concluded that the asymmetric kink-antikink density 45 ViR E}
wave found by Kerner and Konhaud@?2] is described by 6 oXx3 X
the soliton density wave. o 22

We note that we did not find the soliton density wave in 46 \L £+ V_ ﬂ}
the simulation with a periodic boundary condition. This is 24 9X* 4 gx? |
due to the interfering of the compressive wave with the ex- (Ad)

panding wave when a disturbance is added to the uniform
flow for the periodic system. We could find the soliton den-By inserting Eqs(A1)—(A4) into Eq. (15), one obtains Eq.

sity wave for the open boundary system.

(17).
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