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Soliton and kink jams in traffic flow with open boundaries

Masakuni Muramatsu and Takashi Nagatani
Division of Thermal Science, College of Engineering, Shizuoka University, Hamamatsu 432-8561, Japan

~Received 3 November 1998!

Soliton density wave is investigated numerically and analytically in the optimal velocity model~a car-
following model! of a one-dimensional traffic flow with open boundaries. Soliton density wave is distinguished
from the kink density wave. It is shown that the soliton density wave appears only at the threshold of
occurrence of traffic jams. The Korteweg–de Vries~KdV! equation is derived from the optimal velocity model
by the use of the nonlinear analysis. It is found that the traffic soliton appears only near the neutral stability
line. The soliton solution is analytically obtained from the perturbed KdV equation. It is shown that the soliton
solution obtained from the nonlinear analysis is consistent with that of the numerical simulation.
@S1063-651X~99!04807-2#

PACS number~s!: 05.40.2a, 47.55.2t, 89.40.1k
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I. INTRODUCTION

Recently, traffic problems have attracted considerable
tention@1–30#. Uniform traffic flow is stable at low density
When the car density is higher than the critical density,
uniform traffic can be unstable, with localized regions
high density and low velocity spontaneously appeari
These density waves preserve their shape and move b
ward with constant speed; they correspond to the ‘‘ph
tom’’ traffic jams, which appear on a highway for no appa
ent reason.

Kerner and Konhauser have found the single-pulse d
sity wave in numerical simulations of the hydrodynamic tr
fic model @22#. The profile of the single-pulse density wav
is shown in Fig. 1~b!. They have applied the linear stabilit
analysis to the traffic model but it has not been analyzed
the nonlinear analysis method. Lately, Kurtze and Hong h
derived the Korteweg-de Vries~KdV! equation from the hy-
drodynamic model by the use of the nonlinear analy
method. They have concluded that the single-pulse den
wave is the soliton@26#. The soliton solution of the densit
wave has the shape shown in Fig. 1~c!. However, the soliton
solution in Fig. 1~c! is not consistent with the single-puls
density wave in Fig. 1~b!. It is conjectured that the single
pulse density wave found by Kerner and Konhauser is
‘‘soliton’’ but is similar to the asymmetric kink-antikink
density wave. On the other hand, Komatsu and Sasa h
derived the modified KdV equation from the car-followin
model@27#. They have showed that the density wave has
kink-antikink shape shown in Fig. 1~a!. By comparing the
analytical solution with the simulation result, they have co
firmed that the phantom traffic jam is the symmetric kin
antikink density wave.

The above observations have brought to our attention
need for distinguishing between the soliton density wave
the kink-antikink density wave. We describe briefly the so
ton and kink soltions in terms of the nonlinear wave eq
tions. The soliton is a solution of the KdV equation:

]R

]T
2

]3R

]X3 1R
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whereX and T are space and time variables. Its solution
described by

R~X,T!5A sech2HA~A/12! S X2
AT

3 D J , ~2!

whereA is the amplitude.
On the other hand, the kink is a solution of the modified Kd
equation:

]R

]T
2

]3R

]X3 1
]R3

]X
50. ~3!

Its solution is described by

R~X,T!5A tanh$A~1/2!A~X2A2T!%. ~4!

Thus, the kink solution is definitely different from the solito
solution. The kink soliton has the plateau within the dens
wave shown in Fig. 1~a!. The propagation velocity of the
kink is definitely different from that of the soliton.

Until now, the soliton density wave predicted by Kurtz
and Hong is not observed in the traffic simulations. There
an important question whether or not the soliton dens
wave appears in the traffic simulation. If the solitonlike de
sity wave is observed in the simulation, it should be co
pared with the analytical solution of the traffic model.

In this paper, we carry out the computer simulation for t
optimal velocity model with open boundaries. We calcula
the fundamental diagram~the traffic current against density!.
Then, we study the condition such that a density wave
pears when a car decelerates instantly. We show that
soliton density wave appears only near the threshold betw
the jam and no jam and when the strength of deceleratio
higher than the threshold, the kink-antikink density wave a
pears. We give the nonlinear analysis for the optimal vel
ity model. We obtain the soliton solution of the KdV equ
tion. We compare the analytical solution with the simulati
result.
180 ©1999 The American Physical Society
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II. SIMULATION AND RESULT

We describe the optimal velocity model proposed
Bandoet al. @5#. The equation of motion of carn is

d2xn

dt2
5aH V~Dxn!2

dxn

dt J , ~5!

wherexn is the position of carn, Dxn(5xn112xn) is the
headway of carn, and a is the sensitivity. The inverse o
sensitivitya corresponds to the delay time in the other c
following models@28#. V(Dxn) is the optimal velocity. Car
n is controlled in such a way that the car velocity adjusts
optimal velocity V(Dxn) depending upon headway. Th
model is a typical one of the car-following models. Th
model is known as the optimal velocity model.

The optimal velocity is given by

V~Dxn!5tanh~Dxn2xc!1tanh~xc!, ~6!

FIG. 1. The schematic profiles of traffic density wav
~jams!. ~a! The symmetric kink-antikink density wave,~b! the
asymmetric kink-antikink density wave, and~c! the soliton density
wave.
-

e

wherexc has the order of the safety distance forvmax ~the
maximal velocity!52.0. The optimal velocity is a function
having the following properties: a monotonically increasi
function with an upper bound~maximal velocity!. The opti-
mal velocity function has a turning point~inflection point! at
Dxn5xc :V9(xc)50. It is important that the optimal velocity
function has a turning point. Otherwise, one cannot der
the modified KdV equation giving traffic jams in terms of
kink density wave.

The above optimal velocity model has been studied
computer simulation only for the periodic boundary con
tion. It has been shown that the kink density wave~traffic
jam! appears below the critical pointac52.0. We could not
find the soliton density wave for the periodic boundary co
dition. Therefore, we perform computer simulation for t
optimal velocity model under the open boundary conditio
We consider the one-dimensional road with the entrance
the exit. When a car reaches the exit, its car is removed f
the road. Then, the optimal velocity of the front car near
to the exit becomes the maximal velocity 2.0 since there
no cars in the front of its car. The front car is accelerated
the difference between the maximal and present velocitie
the distance between the entrance and the last car neare
the entrance comes to be equal to the prescribed value, a
car is introduced at the entrance on the road. The prescr
value is given by 1/r121 wherer1 is the car density at the
entrance. We define the relationship between the head
and the density as following:Dx51/r21. If one adopts
Dx51/r, the density is larger than 1 forDx,1 and diverges
in the limit Dx→0. Therefore, we adopt the relationsh
Dx51/r21 in order to normalize the density. This relatio
corresponds to a car length of 1. Equation~5! is calculated
numerically by the use of the fourth-order Runge-Ku
method where the time interval is 1/128. Figure 2 shows
plot of the traffic current as a function of the density at t
entrance for various values of sensitivity. Here we setxc
53.0. For entrance density lower than 0.2, the current is
the single curve. For larger sensitivity than the critical se
sitivity ac52.0, the current is on the same curve asa52.0.
After the current reaches the maximal value, the curren
constant for entrance densities higher than 0.2. For sens

FIG. 2. The plot of the traffic current against the entrance d
sity for sensitivitya50.75, 1.00, 1.25, and 2.00. The circles, tr
angles, squares, and white diamonds indicate the simulation re
The solid line indicates the analytical result.
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ity lower than 2.0, after the current reaches the maxim
value, the current decreases, and becomes a constant
with increasing entrance density. The constant value of c
rent depends on the sensitivity fora,2.0 and decreases wit
sensitivity. It has been shown that the macroscopic mod
have the same qualitative behavior as the optimal velo
model @31,32#. If no jams appear, the velocity in the stea
state is equal to the optimal velocity. In the traffic flow wit
out jams, the current is given by

Q5V~Dxn!/~Dxn11!. ~7!

The current of Eq.~7! is indicated by the solid curve in Fig
2. For densities lower than 0.2, the current obtained from
simulation agrees with Eq.~7!. By differentiating Eq.~7!
with headway and taking the derivative to be zero, we fi
that the maximal current occurs at density 0.2. The den
wave does not appear at any density for the open bounda
On the other hand, the density wave occurs at high den
for the periodic boundary when a small disturbance is ad
to the system.

Figure 3 shows the typical headway profile obtained a
t51000 for a51.0 andr150.5. Except for the neighbor
hood of the entrance and exit, the headway is a constant
the value equals 5. The headway 5 comes to the den
0.166--, calculated in terms of density. For entrance den
larger than 0.2, the density near the center of the road is
than 0.2. In Fig. 4, we plot the traffic current against t

FIG. 3. The density profile obtained att51000 for sensitivity
a51.0 and entrance densityr150.5.

FIG. 4. The plot of the traffic current against the density at
road center for that in Fig. 2.
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density at the road center for that in Fig. 2. The traffic curr
is on the curve of Eq.~7!. Traffic relaxes to free equilibrium
traffic regardless of the density at the inflow boundary. W
study how headway near the road center changes with
sensitivity for the cases of the entrance densitiesr150.5 and
r150.2. Figure 5 shows the plot of the headway at the ro
center against the sensitivity. The circles and triangles in
cate the headways ofr150.5 andr150.2 for various sensi-
tivities. The phase separation line and the neutral stab
line ~obtained from the nonlinear analysis and linear stabi
analysis@5#! are shown by the solid lines. For the high de
sity r150.5, the headway at the road center increases w
decreasing sensitivity. The current is less than the maxi
current. The headway is along and above the phase sep
tion line. The density wave~traffic jam! does not occur even
if the disturbances are added to this steady state. For1
50.2 yielding the maximal current, the headway at the ro
center remains the constant 4.0 with decreasing sensit
until it crosses the neutral stability line. If the disturbanc
are added to the traffic flow near the crossing point, the d
sity wave ~traffic jam! can occur. Except for the neighbo
hood of the crossing point, the density wave does not oc
even if the disturbances are added. The region between
phase separation line and the neutral stability line repres
the metastable traffic flow@30#. When the sensitivity is large
than 2.0, the headway at the road center is all the same
This explains why the traffic current is the maximal curre
for the sensitivity larger than 2.0 and density higher than 0

We study how the maximal current varies with the safe
distancexc ~headway at the turning point of the optimal v
locity function!. As a result, the headway at maximal curre
nearly equals the headway at the inflection point11. The
simulation result is consistent with the analytical result.

We study whether or not density waves appear when
disturbances are added. We add the disturbances as fo
ing: after the traffic flow reaches the steady state, the lead
closest to the exit is decelerated to the prescribed low ve
ity during ten time steps where the unit time step is one.
call this the slowdown velocity for the prescribed low velo
ity. For entrance density higher than 0.2, the density wa
propagating sufficiently long time does not appear even if

e

FIG. 5. The plot of the headway at the road center against
sensitivity. The circles and triangles indicate the headways ofr1

50.5 andr150.2. The solid lines indicate the phase separation l
and the neutral stability line.
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sensitivity is less than the critical value 2.0. The dens
wave formed at early stage disappears in time. For the
trance densityr150.2 yielding the maximal current, the den
sity wave appears when the sensitivity is between the ph
separation line and the neutral stability line and the la
disturbance is added. The region map~the plot of the slow-
down velocityns against the sensitivity! is shown in Fig. 6
where headwayDx is 4.0. The circles indicate the solito
density wave. The regions I, II, and III represent, resp
tively, the spontaneous jam, the kink density wave, and
jam. The soliton density wave appears only on the bound

FIG. 7. The density profile~a! at t51300 and the space-tim
evolution ~b! of headway fora51.0, ns51.1175. The typical soli-
ton density wave is observed.

FIG. 6. The region map at headwayDx54.0. The circles indi-
cate the points at which the soliton density wave occurs. The
gions I, II, and III represent, respectively, the spontaneous jam,
kink density wave, and no jam.
y
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line between the regions II and III. In the region III, th
density wave formed at early stage disappears in time. W
the sensitivity is between 0.84 and 1.50, the traffic flow
metastable. The soliton density wave is unstable even if p
turbations are very small. All perturbations will either d
velop to the kink-antikink density waves or dissolve in t
course of time. It would also mean that real stable localiz
traffic clusters are never the KdV soliton. As a result, it
concluded that the soliton density wave is observed on
boundary line between the regions of the kink density wa
and of the dissolving density waves. When the sensitivity
less than 0.84, the traffic flow is unstable and the kink d
sity wave is formed even if the disturbances are small. T
typical space-time evolutions of headway are shown in F
7, 8, and 9. Figure 7 shows the space-time evolution~b! of

FIG. 8. The density profile~a! at t51300 and the space-tim
evolution ~b! of headway fora51.0, ns51.1170. The soliton den-
sity wave crosses over the kink density wave.

e-
e

FIG. 9. The space-time evolution of headway fora51.0, ns

51.1180. The density wave disappears in time.
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headway betweent5500 andt51500 and the headway pro
file ~a! at t51300 fora51.0, ns51.1175, andxc53.0. The
typical soliton density wave is observed. It propaga
backward with the constant velocity. Figure 8 shows
space-time evolution~b! of headway betweent5500 andt
51500 and the headway profile~a! at t51300 for a51.0,
ns51.1170, andxc53.0. The density wave propagates bac
ward. It crosses over the kink density wave from the soli
density wave. The propagation velocity of soliton is less th
that of the kink density wave. The width of the kink-antikin
pulse increases with time but the height remains a cons
Figure 9 shows the space-time evolution of headway
tween t5500 andt51500 for a51.0, ns51.1180, andxc
53.0. At the early stage, the soliton density wave is form
but disappears in time. Thus, the soliton density wave
pears only near the boundary line between the regions II
III.

When a perturbation is added to a uniform traffic flow
the metastable state, both expansion and compression w
occur at the early stage. Then, both waves propagate forw
and dissolve in the course of time as the compression w
interferes with the expansion wave. The phenomenon
pends little on the location of the perturbation if the locati
is far from the exit. However, if a perturbation near the e
is added to the metastable traffic flow under the open bou
ary condition, the expansion wave never appears and
the compression wave propagates backward. In the cours
time, the compression wave develops to the kink-antik
density wave.

III. NONLINEAR ANALYSIS

We derive the KdV equation describing the soliton de
sity wave from the optimal velocity model. The linear stab
ity analysis for the optimal velocity model has been done
Bando et al. @5#. For later convenience, we carry out th
linear stability analysis@5,27#. Equation~5! has the follow-
ing steady-state solution:xn

(0)5Dx(0)n1V(Dx(0))t where
Dx(0) is the constant headway. Letyn be a small deviation
from the uniform steady-state flow:xn5xn

(0)1yn . Then,
the linear equation is obtained from Eq.~5!,

d2yn

dt2
5aH V8~Dx~0!!Dyn2

dyn

dt J , ~8!

where V8(Dx(0))5dV(Dx)/dDxuDx5Dx(0). By expanding
yn}exp(ikn1zt), the following equatiion ofz is derived:

z21az2aV8~Dx~0!!~eik21!50. ~9!

From Eq.~9!, one obtains the neutral stability condition:

as52V8~Dx~0!!. ~10!

The uniform traffic flow with headwayDx(0) and velocity
V(Dx(0)) is stable if the following condition is satisfied:

a.2V8~Dx~0!!. ~11!

By expanding Eq.~9! with ik near the neutral stability point
one obtains
s
e
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z~k!5
as

2
ik1

as2a

4
k22

as

12
ik32

as

16
k41O~k5!. ~12!

Suppose the headway of uniform traffic is near the neu
stability point. We quantify this by writing

V8~Dx~0!!2
~as2da!

2
5

da

2
5

a

2 S as

a
21D ,

a

2 Uas

a
21U[b«2, ~13!

where« is an arbitrary parameter andb5a/2.
We have introduced« as a small scaling parameter. W

consider the slowly varying behavior at long waveleng
near the neutral stability line. We wish to extract slow sca
for space variablen and time variablet. We determine the
scalings ofn and t. The real part of Eq.~12! contains both a
fourth-order dissipation term and a negative diffusion ter
From the balance of the two terms,k scales ask}«. This
leads to the scaling relationn}«21. The scaling oft is de-
termined by the lowest-order imaginary term in Eq.~12!. It is
given by a dispersion term ofik3 since the propagation term
of ik is eliminated by shifting to a moving coordinate syste
Thus,t scales ast}«23. For 0,«!1, we, therefore, define
the slow variablesX andT @26–30,33#:

X5«•~n1bt! and T5«3t. ~14!

We rewrite Eq.~5! as follows:

d2Dxn

dt2
1a

dDxn

dt
2a@V~Dxn11!2V~Dxn!#50. ~15!

We expect that an amplitude equation would balance
linear growth term of order«4A with a stabilizing nonlinear
term of orderA3. Thus, we expect that the disturbance sa
rates at a size of order«2. We, therefore, set the headway

Dxn5Dx~0!1«2R~X,T!. ~16!

By inserting Eq.~16! into Eq.~15! and expanding to the sixth
order of «, one obtains the following nonlinear differentia
equation:

«3a~b2V8!
]R

]X
1«4S b22

aV8

2 D ]2R

]X2

1«5aF]R

]T
2

V8

6

]3R

]X32V9R
]R

]XG
1«6F2b

]2R

]X]T
2

aV8

24

]4R

]X42
aV9

4

]2R2

]X2 G50, ~17!

where V85dV/dDxuDx5Dx(0) and V95d2V/dDx2uDx5Dx(0)

and we used the expansions shown in the Appendix.
By taking b5V8, the third-order term of« is eliminated.

By inserting Eq.~13! into Eq. ~17!, one obtains
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«5aF]R

]T
2

V8

6

]3R

]X32V9R
]R

]XG1«6F S V82

3
2

aV8

24 D ]4R

]X4

1bV8
]2R

]X2 1S V8V92
aV9

4 D ]2R2

]X2 G50, ~18!

where we used

]2R

]X]T
5

V8

6

]4R

]X4 1
V9

2

]2R2

]X2 1O~«!.

In order to derive the regularized equation, we make
following transformations:

T5A~V8/6ugu3!T8, X52A~V8/6ugu!X8,

and R5
ugu
V9

R8, ~19!

whereg is a negative constant. With the use of Eq.~19!, one
obtains the regularized equation,

«5a
g2

V9
A~6ugu/V8!F]R8

]T8
1

]3R8

]X83 1R8
]R8

]X8 G
1«6

6g2

V8V9 FbV8
]2R8

]X82 12uguS V82
a

8D ]4R8

]X84

1uguS V82
a

4D ]2R82

]X82 G50. ~20!

If one ignores theO(«6) terms in Eq.~20!, it is just the KdV
equation with a soliton solution as the desired solution,

R08~X8,T8!5A sech2FA~A/12!S X82
A

3
T8D G . ~21!

Amplitude A of soliton solutions of the KdV equation is
free parameter. The perturbation termsO(«6) of perturbed
KdV equation~20! select a unique member of the continuo
family of KdV solitons.

Next, assuming that R8(X8,T8)5R08(X8,T8)
1«R18(X8,T8), we take into account theO(«) correction. In
order to determine the selected value ofA for the soliton
solution ~21!, it is necessary to satisfy the solvability cond
tion,

~R08 ,M @R08# ![E
2`

`

dX8R08M @R08#50, ~22!

whereM @R08# is theO(«6) term of Eq.~20!.
By performing the integration, one obtains the selec

value

A5
14V8

3ugu
. ~23!

By rewriting each variable to the original one, one obta
the soliton solution of the headway:
e

d

s

Dxn5Dx~0!1
14V8

3V9
Uas

a
21Usech2

3FA~7uas /a21u/3!H n1S 11

14Uas

a
21U

9
D V8tJ G .

~24!

We show the analytical result in Fig. 10. The solid curv
indicate, respectively, the plots of the headway against
position for sensitivitya50.90, 0.95, 1.00, and 1.10. Th
circle, triangle, square, and diamond points indicate, resp
tively, the simulation result fora50.90, 0.95, 1.00, and 1.10
The analytical results are in good agreement with the sim
lation results near the neutral stability point. Figure 11 sho
the plot of the propagation velocity of soliton against sen
tivity. The solid curve indicates the analytical result. T
circles indicate the simulation result. The simulation res
agrees with the analytical result near the neutral stab
point.

FIG. 10. The plot of the headway against the position within
soliton density wave. The circle, triangle, square, and diam
points indicate, respectively, the simulation result fora50.90, 0.95,
1.00, and 1.10. The analytical results are represented by the
curves.

FIG. 11. The plot of the propagation velocity of soliton again
sensitivity. The solid curve represents the analytical result. T
circles indicate the simulation result.
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For comparison, we shortly describe the derivation of
modified KdV equation of the kink density wave. The d
rivative V8 of the optimal velocity has the maximal value
the turning pointDxn5Dxc . Therefore, in Eq.~10!, there
exists a critical value ofa, denoted byac . Above the critical
point, the jamming transition never occurs irrespectively
density. From the parabolic form of the neutral stability li
near the critical point, it is expected that the amplitude of
density wave scales asA}« @27#. We set the headway as

Dxn5Dxc1«R~X,T!. ~25!

We note that the kink density wave is obtained by expand
the headway ‘‘around the critical point’’ and the soliton de
sity wave is derived by expanding the headway ‘‘near
neutral stability line.’’ By inserting Eq.~25! into Eq. ~15!
and expanding to the fifth order of«, one obtains the modi
fied KdV equation with the perturbed term. Finally, one o
tains the kink solution of the headway:

Dxn5Dxc6A~5V8~Dxc!uac /a21u/uV-~Dxc!u!

3 tanhFA~5uac /a21u/2!

3H n1S 12
5

6 Uac

a
21U DV8~Dxc!tJ G , ~26!

whereac is the value 2.0 of sensitivity at the critical poin
andV8(Dxc) is the derivative of optimal velocity function a
the critical point. The modified KdV equation is derived ne
the critical point (ac ,Dxc) @27#. However, the kink density
wave solutions agree with the simulation result far from
critical point @27–30#. The kink-antikink density wave ob
served in our simulation of Sec. II looks similar to the mod
fied KdV solution. On the other hand, the KdV equati
describing the soliton is derived only near the neutral sta
ity line. The KdV equation has been derived from the hyd
dynamic model by Kurtze and Hong@26#. However, they
have not been compared with the simulation result. Th
have concluded that the asymmetric kink-antikink dens
wave found by Kerner and Konhauser@22# is described by
the soliton density wave.

We note that we did not find the soliton density wave
the simulation with a periodic boundary condition. This
due to the interfering of the compressive wave with the
panding wave when a disturbance is added to the unif
flow for the periodic system. We could find the soliton de
sity wave for the open boundary system.
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IV. SUMMARY

We have investigated the traffic flow for the open boun
ary condition. We have found that the traffic current satura
at the maximal current and no jam appears without dis
bances. We have shown that when the slowing down lar
than the threshold occurs, the two types of traffic jams
pear: one is the soliton density wave appearing on the thr
old and the other is the kink density wave. We have analy
the optimal velocity model and derived the KdV equati
near the neutral stability line. We have obtained the soli
solution analytically. We have shown that the simulation
sult is consistent with the analytical result of the soliton de
sity wave.

To our knowledge, until now, the soliton density wav
has not been distinguished with the kink density wave. In
literature of traffic, the kink density wave has been confus
with the soliton density wave. We have clarified the diffe
ence between the soliton and kink density waves.

APPENDIX

In this appendix, we give the expansions of each term
Eq. ~15! to sixth order of«.

dDxn

dt
5«3b

]R

]X
1«5

]R

]T
, ~A1!

d2Dxn

dt2
5«4b2

]2R

]X2 12«6b
]2R

]X]T
, ~A2!

Dxn115Dx~0!1«2R1«3
]R

]X
1«4

1

2

]2R

]X2 1«5
1

6

]3R

]X3

1«6
1

24

]4R

]X4 , ~A3!

V~Dxn11!2V~Dxn!5«3V8
]R

]X
1«4

1

2
V8

]2R

]X2

1«5FV8

6

]3R

]X3 1V9R
]R

]XG
1«6FV8

24

]4R

]X4 1
V9

4

]2R2

]X2 G .
~A4!

By inserting Eqs.~A1!–~A4! into Eq. ~15!, one obtains Eq.
~17!.
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