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Chaotic jam and phase transition in traffic flow with passing

Takashi Nagatani
Division of Thermal Science, College of Engineering, Shizuoka University, Hamamatsu 432-8561, Japan
(Received 19 October 1998

The lattice hydrodynamic model is presented to take into account the passing effect in one-dimensional
traffic flow. When the passing constaptis small, the conventional jamming transition occurs between the
uniform traffic and kink density wave flows. When passing constaig larger than the critical value, the
jamming transitions occur from the uniform traffic flow, through the chaotic density wave flow, to the kink
density wave flow, with an increasing delay time. The chaotic region increases with passing con3taamt
neutral stability line is derived from the linear stability analysis. The neutral stability line coincides with the
transition line between the uniform traffic and density wave flows. The modified Korteweg—de Vries equation
describing the kink jam is derived for small valuesypby use of a nonlinear analysis.
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[. INTRODUCTION ing the passing effect into the deterministic model. We show

that the chaotic jam indeed appears in the deterministic traf-

Recently, traffic problems have attracted considerable afic model. Taking the passing into account makes the phase
tention[1-6]. The jamming transitions between freely mov- diagram much richer. Besides the known jammed and non-

ing traffic and jammed traffic have been found in the trafficiammed phases, a new phdsbaotic jam is identified. We

models. In the freely moving traffic, the car density is low @pply the linear analysis to the traffic model. We show that
and distributed uniformly on a highway. In the jammed traf- the neutral stability line coincides with the phase boundary
fic’ the density wave of h|gh density propagates backward,ne l.)etWeen the Un|f0rm tl‘affIC ﬂOW W|th0ut JamS a.nd the

into the low-density flow. The transitions are very similar to density wave phase. Furthermore, we prove that the density
the conventional phase transitions and critical phenomengave can be described by the modified Korteweg—de Vries

[7-15]. (KdV) equation for small passing constant.
The jamming transition has been described in terms of the
thermodynamic terminology of phase transitions and critical Il. LATTICE MODEL

phenomend16,17. The freely moving traffic and jammed

traffic correspond, respectively, to the gas and liquid phases For later convenience, we present the lattice version of the

in the conventional gas-liquid phase transition: the car denc_:ontmuum model on a single-lane highway without passing

sy or heacway correspond 1o e deniy or volgne L1 1 sice hyotooyanic madel s feserbed by e
order parametgrand the sensitivity parametéhe inverse of 9 q ag

the delay timé corresponds to temperature. The coexisting p;(t+ )= pj (1) + 7pol p; () (1) — pj—1(D)Vj - 1(1)]=0,

curve, spinodal line, and critical point are obtained from the (1
derivatives of the thermodynamic potential that is derived
from the traffic model§16,17. pj(t+1)v;(t+7)=peV(pj11(1)), (2

The density wave in the coexisting phase appears with the

kink-antikink form in the car following models that are not Where the subscrigtindicates sitg on the one-dimensional
stochastic but deterministj8,14,15. Once the density wave lattice. pj(t) and v;(t) represent, respectively, the density
is formed, it is robust and regular. The kink density waveand velocity on sitg at timet. pq is the average density.
neither breaks up nor coalesces with others in the steadgquation(l) is the lattice version of the continuity equation
state, except for the early stage. To our knowledge, the aghat relates local density;(t) to local average speed(t).
pearance of a chaotic traffic jam has not yet been reportedpace variablgis a dimensionless variable divided by aver-
The chaotic traffic jam means that the density waitesffic ~ age headway p4. The lattice spacing is taken to be average

jams become unstable, break up, and coalesce irregularly iheadway 14,. Equation(2) is the evolution equation in
the deterministic models. There is an important question aplace of the Navier-Stokes equation. The functit;(t))
to whether or not the chaotic jam occurs in the deterministids called as the optimal velocity. It is given by
traffic models. Does the density wave break up and coalesce
with others in the chaotic traffic flow? Does the passing have V(p<(t))=tan>‘( 2 Pj(zt)_ 1 +tan)—(i). 3)
an important effect on the traffic flow? J po Pec Pec

In this paper, we extend the single-lane traffic madie-
scribed by the lattice hydrodynamic equatipts take into ~ This function has the turning poinfinflection poin} at
account the passing effect. We investigate the effect of pas®;(t) = pc. whenp,=p., wherep, is the average density and
ing on the traffic flow. We would like to address whether or p. is the inverse of the safety distani®16,17. We intro-
not the traffic flow exhibits the chaotic behavior by introduc- duce the parametgy, to be —p%V(po)’= 1 whenpgy=pc.
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Generally, it is necessary that the optimal velocity functiondimension of the first term. Parameteis the time interval
have the following properties: being a monotonically de-in the difference equatiof6) and is important in the traffic
creasing function, having an upper bou¢rdaximal veloc- model.
ity), and having a turning point at the safety distaftél. It We consider the nonrandom initial condition in order to
is important that the optimal velocity function have a turningstudy the chaotic behavior in the deterministic model. Ini-
point. Otherwise, one cannot obtain a kink-antikink densitytially, the density is assumed to be a step function such as
wave representing the stable traffic jam.

The delay timer allows for the time lag that it takes the
traffic current to reach the optimal curreptV(p;1(t))
when the traffic flow is varying. The idea is that traffic cur- Pj(0)= L
rentp;(t)v;(t) on sitej at timet is adjusted by the optimal pot+A for Esj <L,
currentpoV(p;;1(t— 7)) on sitej+1 at timet—7. This is )
similar to the idea of the car-following model analyzed by . L @)
Newell_[18] ar_1d Whithan{19]. We have performgd the com- po—A for 0<j<=—m, L-m<]L,
puter simulation for the above model and confirmed that the . _ ) 2
kink density wave of the jam occurs when the density ispl(l)_ )
larger than the critical value. We have also analyzed the \ potA for —m<j<L-m,
above model and derived the modified KdV equation, and
time-dependent Ginzburg-Land&lUDGL) equation[17]. whereA is a constantm is a positive integer, antl is the
~ We extend the above model to take into account the pasgystem size. The boundary is periodic. We performed the
ing. The continuity equatiofl) does not change by the pass- simylation for various values of average dengigand delay
ing but the evolution equatiof2) changes. When the traffic time 7 for 0<y<0.4, wherep,=0.2 and 108 L <400. As a
current on sitg is larger than that on sitg+1, a passing  result, the four types of traffic flow are distinguishei: a
occurs. We assume that the traffic quantity of the passing ofiniform traffic flow with low density(ii) a traffic flow with
site j is proportional to the difference between the optimalkink density wavesiii) a traffic flow with chaotic density
traffic currents on sitegandj + 1. Then, the evolution equa- waves, and(iv) a uniform traffic flow with high density.

,

L

tion taking account of the passing is given by Besides the known traffic flow@), (i), and(iv), a new traf-
B fic flow (iii) is identified. In what follows, we will justify the
pi(t+ 1)Vvj(t+7)=poV(p;+1(1))+ y[poV(pj+1()) term “chaotic” for the new traffic flow(iii) by computing

— poV(pi 2], (4)  Fourier spectra, Lyapunov exponents, and phase-space plots.

Taking passing into account makes the new phase. Typical
wherey is the passing constantoV(p;1(t)) is the optimal ~ patterns of _two_traffic flowsii) and (iii ) with de_nsity waves
traffic current on sitg +1 at timet andpoV(p;»(t)) is the ~ are shown in Fig. 1. Pafg) shows the space-time evolution
optimal current on sit¢+ 2 at timet. The traffic flow with ~ of density fory=0.3, a(=1/7)=3.5, andp,=0.2 whereL

the passing is described by Eq$) and(4) with Eq. (3). =100 andt=20 000-20 200. It is a typical traffic pattern of
By eliminating the velocity in Eqgs(1) and (4), one ob-  type (ii). It exhibits a kink-antikink density wave. The kink
tains the density equation density wave is stable and robust, except for the early stage.
The kink density wave is similar to that observed in the
pj(t+27)—pi(t+7)+ Tpé[V(pj+1(t))—V(pj(t))] traffic flow with no passing. Paith) shows the space-time
) evolution of density fory=0.3, a(=1/7)=5.0, and pg
—y7pol V(pj+2(1) = 2V(pj1(1) +V(pj(1))]=0. (5  —=0.2 whereL=100 andt=20000-20200. It is a typical

_ traffic pattern of typdiii ). It exhibits irregular density waves.
The last term on the left-hand side of E§) represents the The density waves coalesce with one anottgen ina

density variation caus_ed by th_e pas§ing. Wher0., E_q.(5) _—b) and break ugseen inc—d). The chaotic traffic flow is
reproduces the density equation without the passing. It W'l|nduced by introducing the passing effect into the original
be expected that the traffic behavior changes with increasingingle_|ane traffic modef17]. Both density waves in Figs.
passing constant. 1(a) and Xb) propagate backward and represent the traffic
jams.
ll. SIMULATION In order to justify the term “chaotic,” we compute the
Fourier spectra, the phase-space plots, and the Lyapunov ex-
ponents. Figure 2 shows the Fourier spectra of time series of
density wherd =30 000-40 000. The Fourier spectra corre-
spond to the traffic pattern@) and (b) in Fig. 1, respec-
tively. The kink density wavda) exhibits the typical struc-
pi(t+2)—p;(t+1)+ TpS[V(ij(t))—V(pj(t))] ture of a periodic function. The chaotl_c densn'y waves exh|p|t
the typical structure of a nonperiodic function. The traffic
- ’)/TpS[V(pj+2(t))—2V(pj+1(t))+V(pj(t))]=O_ (6) flows ), (ii)_, angl(iv) are the_ typical traffic patterns appear-
ing for traffic with no passing. The chaotic density waves
Sincer, pg, andV have dimensions dftime], [length] 1, (iii ) appear for traffic with passing.
and[length)/[time], respectively, the second and third terms  We study the phase diagram for the traffic flow with pass-
have the dimension of density. This is consistent with thang. Figure 3 shows the phase diagram in parameter space

We carry out a computer simulation for the traffic-flow
model described by Eq5). We discretize time by time
interval . Now, the symbol represents the time step num-
ber. Then, from Eq(5), one obtains
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FIG. 2. Fourier spectra of time series of the density. They cor-

respond to traffic pattern@ and (b) in Fig. 1, respectively.

FIG. 1. Two typical patterns of the spage-time (t) evolution

of density p; for passing constany=0.3 and average densify, . . _ .
=0.2 betweeri=20 000 and 20 200 where system slizis 100.(a) S.hOW the uniform traffic flow foa= 1.6'0' the F:haOtIC den-
sity wave flow fora=3.75, and the kink density wave flow

The kink-antikink density wave for the sensitivityhe inverse of
delay timg a=3.5. The density wave is robudt) The chaotic
density waves fom=5.0. They coalesce with one another¢b)

for a=3.5, respectively, wherey/=0.4 and py,=0.2. The
critical point is given bya,=15.0 for y=0.4. Profiles(a),
(b), and(c) represent the typical density profiles of the traffic

and break upg¢—d).
flows in regions I, Ill, and Il, respectively. The traffic flow

(y,a) wherepy=0.2. Regions I, I, and Il indicate, respec-
tively, the uniform flow with no jam, the jammed flow of the
kink density wave, and the jammed flow of the chaotic den-
sity wave. Curvea,=3/(1—2y) represents the critical line
predicted by the linear stability analydisee Sec. IY. The
boundary line between the uniform flow and the density
wave flow obtained from the simulation coincides with the
critical line. When the passing constapis larger than 0.1,
the chaotic density waves appear. For valuesydmaller
than 0.1, the chaotic density waves do not appear. Jor
< 0.1, the traffic behavior is similar to that of the single-lane
traffic without passing, except that the critical poiat
[=3/(1-2v)] increases withy [17]. The boundary line be-
tween the kink and chaotic density waves is the lineaof
=3.75 for 0.k y=<0.4. With increasingy, region lll, cha-
otic jams, expands to that of large Region II, kink jams,
remains the same as that p&0.1.

10 - 1  1-2

a B no jam

5L (0.1,3.75) chaotic jam
3" g
B kink jam II (0.4, 3.75)
0 L 1 | |
0 0.1 0.2 0.3 0.4

e

FIG. 3. Phase diagram in parameter spagea) where pg

=0.2. Regions |, Il, and Il indicate, respectively, uniform flow

Figure 4 shows the typical density profiles obtained aftefwith no jam, jammed flow of the kink density wave, and jammed

t=20000 for y=0.4. The density profilesa), (b), and(c)

flow of the chaotic density wave.
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FIG. 4. Typical density profiles obtained after 20 000 for y
=0.4. The density profile&), (b), and(c) exhibit, respectively, the P
uniform traffic flow fora=16.0, the chaotic density wave flow for N e
a=3.75, and the kink density wave flow fa=3.5, wherey 0+ j? ég j
=0.4 andpy= M
(a) obtained after a sufficiently long time is almost uniform
spatially but fluctuates a little aroungy=0.2. When y
=0.0, the fluctuation does not occur. The profite exhibits -0.05
the irregular pattern that is characteristic of chaos. The ' : 0 '25
strength of density profiléb) increases as sensitivigy (the 0.15 0.2 o)
inverse of delay timer) departs from critical pointa, (&)

=15.0. The stronger chaotic jams appeanakeviates from

the critical point. The profilgc) exhibits the typical kink-
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FIG. 5. Plots of the density differenge(t) —p(t—1) against

antikink density wave. The kink density wave is similar to densityp(t) for t=20000-30 000. Plot&)—(c) correspond to traf-
that observed in single-lane traffit7], except for the spikes fic flows (a)—(c) in Fig. 4, respectively.
in the front and rear of the kink. Whey= 0.0, the spikes do

not appear.
Figure 5 shows the plots of density differene@) — p(t
—1) against density(t) for t=20000-30 000, wherg(t)

When y=0.0, the uniform traffic flow is indeed plotted by

the single poinf0.2, 0.0. Plot(a) reflects the small and slow
variation of density in Fig. @). In this case, the traffic state

is the density at time at a position of the one-dimensional is not represented by a single point, but is expressed by the
lattice. Plots(a), (b), and(c) correspond to the traffic flows bar in the phase-space plot. Pl of the chaotic jam ex-

(@, (b), and(c) in Fig. 4, respectively. When the density is hibits the behavior characteristic of the chaos. The chaotic
uniform spatially, its uniform traffic is represented by a traffic flow is represented by the set of dispersed points in the

single point p,,0) in the phase-space plot, wheig=0.2.

phase-space plot. This is characteristic of chaos. (@)obf
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A a state as traffic flow with constant densijty and constant
N velocity V(pg). The solution of the uniform steady state is
given by

S y =04 a=375 P, =02
001 ' .
pi(t)=po, Vj(t)=V(po). (8)
Let y;(t) be a small deviation from the uniform steady-state

flow: pj(t) =po+Y;j(t). Then, the linear equation is obtained
from Eq. (5),

0.005

yj(t+27) —yj(t+7) + 75V [y 1(1) —y;(D)]
0 100 200 300 — VY42 =2y, 1 (D +y;(D]=0,  (9)

(a) whereV’ =dV(p)/dp|,-,,.
By expandingy;(t)«exp(kj+zf, the following equation
of zis derived:

e?—e"+ 1pgV’ (€%~ 1) — y7pgV' (e** 2™ +1)=0.

7 =04 (10)

-0.02 - a=35
: P, =02 By expanding z=z,(ik)+z,(ik)?+---, the first- and
second-order terms @k are obtained

-0.04 |- 3 (1-2y)
, 2==pgV', z=—57(pgV) - 5
0 100 200 300 1D
If z, is a negative value, the uniform steady-state flow be-
(b) ;
comes unstable for long-wavelength modes. Whens a
FIG. 6. Plots of Lyapunov exponent against timet. (a) The  positive value, the uniform flow is stable. The neutral stabil-
Lyapunov exponent corresponding to the chaotic flow in Fi).4 ity condition is given as
(b) The Lyapunov exponent corresponding to the kink density wave
in Fig. 4(c). (1-2y)

T=— W (12)

oV’

the kink jam exhibits the limit cycle characteristic of the

periodic pattern. The nodes on the right and left sides in ploFor small disturbances of long wavelengths, the uniform traf-
(c) represent the traffic states within and out of the kinkfic flow is unstable if

(traffic jam). When y=0.0, the kink traffic flow is repre-

sented by an elliptical curve in the phase-space plot. (@Jot . (1-2y) 13
reflects the kink-antikink jam, with the spikes shown in Fig. T 3p07V’ :
4(c).

We calculate the Lyapunov exponentof the time evo-  The derivativeV'(p,) of the optimal velocity has the mini-
lution of the density for the two density wave flows shown inmal value at turning poinp,=p.. Therefore, ifr<7, [ 7,
Figs. 4 and 5. As a result, the chaotic traffic flow displays a= —(1—2+y)/3p2V’=(1—27)/3], the uniform flow is al-
positive Lyapunov exponert) in Fig. 6. This is character- \ays stable, irrespective of density. We find that there is a
istic of chaos. In contrast, the kink density wave flow dis-critical point atp=p, and 7=7,. When y=0, the critical

plays a negative Lyapunov exponeih in Fig. 6. This is  point and the neutral stability line agree with those in a
characteristic of regular motion. Thus, it is confirmed that thesjngle-lane traffic flow with no passinfl7]. The solid
irregular jams within region IIl in Fig. 3 are in the chaotic cyrves in Fig. 7 show the neutral stability lines fpr=0.0,
state, by studying the phase-space plot, the Lyapunov expgy.1, 0.2, 0.3, and 0.4. The apex of each curve indicates the
nent, and the Fourier spectrum. Indeed, the chaotic traffigritical point. The traffic flow above each curve is stable and
flow bears a resemblance to dynamical chaos in classicghe traffic jam does not appear. Below each curve, the traffic
mechanic$20]. Thus, we have justified the term “chaos” by flow is unstable and the density wave appears. The critical
computing Fourier spectra, phase-space plots, and Lyapun@ints and the neutral stability curves increase with passing
exponents. constanty. In the case ofy=0.0 without the passing, no
traffic jams occur when sensitivitg is larger than 3. The
traffic jams appear because of the passing effect, even if
sensitivitya is larger than 3. This means that by introducing
We apply the linear stability method to the traffic model passing into the original single-lane traffic flow, the traffic
described by Eq(5). We consider the stability of the uni- flow becomes more unstable than that without no passing.
form traffic flow. The uniform traffic flow is defined by such The passing induces a more unstable traffic flow than traffic

IV. LINEAR STABILITY ANALYSIS
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-
8 - —=1+¢? (17)
Tc
6 L where 7,=— (1—27v)/3p2V' = (1—27)/3. Equation(16) is
; rewritten as
4 1—13v— 14 2) pZV//r
. 84( 0TR—#(—p§V’)&§R+ °6 axR®
2 - (1-27) (1—6y+39y°+46y°%)
5 2\ 42
| +e ( 5 (—pgV') xR+ =1
0 (1-4y)
0.1 2 0.2 0.3 X ( _pgv/){?iR_ o ngWﬂiRs

FIG. 7. Neutral stability lines obtained by the linear stability
analysis fory=0.0, 0.1, 0.2, 0.3, and 0.4. The apex of each curve ~ — 5 PCV"'RzaxR) 0. (18
indicates the critical point.
) ) ) ) ) In order to derive the regularized equation, we make the
without the passing. With the increaseywfthe uniform flow following transformation for Eq(18):
becomes more unstable. Unfortunately, the chaotic traffic

flow is not predicted by the linear stability theory. (1 13y—14y?)(— p2 2y )
27 T
V. NONLINEAR ANALYSIS
1\ 12
We now consider long-wavelength modes in the traffic R=| — 2(1-13y—14y%)pgV R’
flow on coarse-grained scales. The simplest way to describe gp(Z:VW '
the long-wavelength modes is the long-wave expansion. We (19

consider the slowly varying behavior at long wavelengths
near the critical pointp.,7.. We extract slow scales for Where we assumed
space variablg and time variablet [13,17,2]. For 0<e

_ _ 2
<1, we therefore define slow variabl¥sandT. 1-13y—-14y">0. (20
—e(j+bt), T=s&3, (14) One obtains the regularized equation
hereb i be determined later. W h 3 s [ 2711~2y)
whereb is a constant to be determined later. We set the 5 R'— 53R’ — g,R’ ~ 2R’
density as “l2(1-13y-149)
3
pi(D)=pet sRX,T). (15  (1207+39°+467)
2(1—13y—14y?) Ix
By expanding Eq(5) to the fifth order ofe with the use of
Egs. (14) and (15), one obtains the following nonlinear ~(1-4y) 2R3 3yR12Z2R 21)
partial-differential equation: 2 X Y X
3b’r  (1-2y) If we ignore theO(e) terms in Eq.(21), this is just the
2 2\ 3 21 | 52 (2D,
e(b+pcV')ixR+e ( 5t PV R modified KdV equation with a kink solution as the desired
- 5 solution,
7b>r V'
Y arR+| —5 p°6 V’)aXR
Ry(X,T")= \/Etanh\/> X—cT'). (22)
v 1 5b%3 PRV’
+ IxR”| + e 3b7dxdrR+ 8 + 24 The selected value of propagation velocityfor the kink
) . solution is determined from th®(e) term. The kink solu-
77’PcV AR+ pcV 2R3 A LM N tion (22) is obtained only when the conditiof20) is satis-
12 X 12 X T2 X fied. The kink solution exists only for
(16) 0<y<4. (23

where V'=dV(p)/dp|,—, and V"=d*V(p)/dp®|,—,.  Thus, we have proven that the modified KdV equation with a
Here we used the expansions shown in the Appendix.  kink solution is derived only for & y< ;. For values ofy

By taking b=—p2V’, the second-order term of is larger than, the modified KdV equation cannot be derived
eliminated from Eq(16). We consider the neighborhood of from the above nonlinear analysis. The simulation result in
the critical pointr,: Fig. 3 exhibits the chaotic jam foy>0.1. The nonlinear
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analysis result is not inconsistent with the simulation result.
The kink density wave can be described by the modified
KdV equation, but the chaotic density waves cannot be ex-
plained by the nonlinear analysis. This may be due to the
singular point aty=1;. Whenvy is larger than, the scaling
assumption14) breaks down. Therefore, a scaling assump-
tion that is different from Eq(14) will be necessary to derive
the nonlinear wave equation describing the chaotic density
wave.

VI. SUMMARY

We have proposed a lattice hydrodynamic model that
takes into account the passing effect in the traffic flow on a
highway. We have investigated the traffic behavior by com-
puter simulation, the linear stability analysis, and the nonlin-
ear analysis. We have found that the chaotic jams appear
when the passing constant is larger than 0.1. The chaotic
traffic has been investigated by computing the Fourier spec-
trum, phase-space plot, and Lyapunov exponent. We have

shown that the transition line between the uniform traffic and Pj+1(1)=pcteR+te

density wave flows coincides with the neutral stability line
based on the linear stability theory. We have proven that the
modified KdV equation can be derived for small values of
the passing constant by use of the nonlinear analysis. We
have found that passing has an important effect on the traffic
flow.

To our knowledge, this paper is the first work to show that
chaotic jams occur by taking passing into account in the
deterministic traffic model. It is expected, as a next step, th
one will derive the nonlinear differential equation describing
the traffic chaos.

APPENDIX

In this appendix, we give the expansions of each term in
Eq. (5) to fifth order ofe:

CHAOTIC JAM AND PHASE TRANSITION IN TRAFFC . ..

V(p)=V(pc) +V'(pc)(pj=pc)+ —g—

1541

(b7)?

5 92R

pj(t+7)=p.+eR+ e?broyR+e3
(b7)
6

 (b7)*
24

+g* 0>3<R+ e*r9:R

+e ¥R+ e%b72010xR, (A1)

(2b7)?
5 4R

pj(t+27)=p.+eR+ e22broyR+ &3

,(2b7)°
6
5 (2b7)*

+eS %R+ e%4br2910R,

+e A3R+e*270:R

(A2)

3 4 5
€ & &
— 0%R+ — 3R+ = 3R,

2
HRE 5 6 24
(A3)

s34

5 92R

pj+2(t)=pcteR+ e220yR+

e'8 ,  £°16 ,
+ TaXR+ >4 IxR. (A4)

a\BVe expand the optimal velocity function at the turning point:

u

(po) (pj—pc)®.

(A5)

By inserting(A1)—(A5) into Eq. (5), one obtains Eq(16).
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