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Abstract  The emergence of large number of antimicrobial-resistant organisms has given 

alarming magnitude. Nature is historically the source of drugs, and microorganisms have 

provided a significant number of antibiotic compounds, which are used every day in the 

treatment of many infectious diseases. However, the introduction to the pharmaceutical 

market of new therapeutic molecules has largely decreased during the last two decades. In 

this review, antibiotics from the genus Micromonospora are recognized as potential 

biofactory for new antibiotic production. The Micromonospora has been deeply studied and 

more than 100 antibiotics isolated from different Micromonospora strains. In addition, 

comprehensive information about the recent development in the field of analytical, biological 

and bioinformatics screening tools, which recently used in the discovery of new therapeutic 

compounds, are provided. It is widely believed that reviving old antibiotics produced by 

Micromonospora is possible and the study of this genus is still interesting for novel bioactive 

molecules discovery. 

 

Keywords: Micromonospora, antibiotics, drug discovery, gentamicin, secondary metabolites, 

natural products. 

  



 
 

3

1. Introduction 

The emerging of antimicrobial-resistant organisms became one of the major problem in the 

treatment of many infectious diseases [1–3]. In December 2014, a report commissioned by 

the British Prime Minister, David Cameron, under the title "Antimicrobial Resistance: 

Tackling a crisis for the health and wealth of nations", was published. This report estimates 

that drug-resistant infections can cause supplement of 10 million deaths annually and an 

economic loss of over 100 trillion USD in 2050 [4,5]. On the other hand, the introductions of 

new antibiotics into therapy market have significantly decreased during the last twenty years, 

because of limitations of drug discovery programs and inappropriate economic-regulatory 

environment [6–9]. Natural products are an essential source of compounds for drug 

discovery. In addition to plants, microorganisms provided a large number of therapeutic 

molecules [10,11]. Recently, a team led by Kim Lewis of Northeastern University in Boston, 

Massachusetts, have published in Nature, the discovery of a new antibiotic called teixobactin, 

with a new mechanism of action, via a new discovery technology. This was the first new 

antibiotic of high therapeutic potential since 1987 [8,12].  

After the discovery of Gentamicin, the genus Micromonospora became an important 

source in the drug discovery process. Nowadays, more than 740 antibiotics have been 

isolated from Micromonospora strains [13,14]. In this review, we proceed to summarize 

briefly the most important antibiotics produced by Micromonospora species, and we give an 

update about the different strategies that can be used in the development of new antibiotics from this 

genus. 

 

2. The Genus Micromonospora 

The genus Micromonospora, a member of the family Micromonosporaceae, was initially 

described by Ørskov in 1923 [15–17]. The species belong to this genus are Gram positive 
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bacteria, aerobic to microaerophilic, chemo-organotrophic, sensitive to pH below 5.0 and 

have optimal temperature between 20 and 40°C. Several strains produce carotenoid mycelial 

pigments, giving the colony which gives different characteristics colors range such as yellow, 

red, orange, brown, purple or black. From its name, this genus produces singly spore directly 

attached to substrate mycelium or carried out short sporophore. The cell wall of 

Micromonospora contains meso-diaminopimelic acid and/ or 3-OH-diaminopimelic acid. The 

major phospholipids are phosphatidylethanolamine, phosphatidylinositol, and 

phosphatidylinositol mannosides [16,17]. The first species of this genera Micromonospora 

chalcea described by Ørskov [15], was isolated by Foulerton in 1905 and classified under the 

name Streptothrix chalceae [18]. This remained the only known strain among the 

actinomycetes bearing the generic name Micromonospora until Jensen in 1930 described a 

large number of soil micro-organisms which corresponded with Ørskov's description [19]. At 

the time of writing, the genus consisted of 61 validly named species (http://www.bacterio.net) 

[20], in addition to the recently described species, like: M. spongicola [21], M. jinlongensis 

[22], M. zeae [23], M. maoerensis [24], M. endophytica [25], M. palomenae [26], M. harpali 

[26], M. oryzae [27], M. vulcania [28], M. fluostatini [29], M. nickelidurans [30], M. 

zhanjiangensis [31]. 

 

3. Antibiotic from the genus Micromonospora 

Actinomycetes are considered as the most important biofactory for therapeutic secondary 

metabolites production, and most of antibiotic discovery researches are usually focus on the 

isolation of novel secondary metabolites from actinomycetes. After the discovery of 

Gentamicin, the genus Micromonospora became an important resource of natural molecules. 

Table 1 shows the most known antibiotics isolated from different strains of the genus 

Micromonospora. It summarizes the chemical class, and producer strain, source of isolation 
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from Micromonosporin, antibiotic compound isolated and described in 1947 by Waksman et 

al. [32] to the recently discovered compounds such as Neomacquarimicin [33].  

The aminoglycosides are one of the widely known classes of antibiotics and include 

many members widely used in the treatment of infectious diseases caused by Gram-positive 

and Gram-negative bacteria. The mode of action is mediated through targeting the bacterial 

ribosome, where they bind to the A-site and interrupt protein synthesis. Aminoglycosides are 

produced essentially by Streptomyces and soil Micromonospora strains [34–39]. 

The most famous antibiotics produced by the genus Micromonospora are Gentamicins 

[40]. The success of this mixture of aminoglycosides is based on the wide spectrum activity 

against Gram-positive and Gram-negative bacteria. The antibiotic mixture was isolated for 

the first time from two strains: M. echinospora (former purpurea) NRRL 2953 and M. 

echinospora NRRL 2985 from soil sample in New York, USA [40–42]. Gentamicins are 

water soluble antibiotic complex, with main constituents of gentamicin C complex C1, C2, 

C1a, C2a, and C2b. The chemical structure of this compound is characterized by a central di-

aminogenouscyclitol (2-deoxystreptamine (2DOS) 4,6-disubstituted with the auxiliary sugars 

garosamine and purpurosamine, Fig. 1(A). In addition to gentamicin C complex, many minor 

components like gentamicins A, B, and X, are used as starting materials for the development 

of antiprotozoal drugs [43,44]. Gentamicin, was introduced into the pharmaceutical market in 

1971 and has been widely used in many medical applications since that time [45]. Currently, 

Gentamicin is part of the essential drug list of the World Health Organization [46]. In 

addition, new gentamicin-conjugants exhibit anti-viral effects (anti-HIV) [43,44], and can be 

also used in genetic therapeutic approaches [47]. In addition, gentamicin was also used 

successfully in agriculture applications [48]. 

Antibiotic G-418 (geneticin), is similar structure to gentamicin B1 and produced by M. 

rhodorangea. In addition to its wide spectrum antibiotic activity active against Gram positive 
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and Gram negative bacteria, it exhibits also some activity against eukaryotic organisms such 

as Protozoa and Helminths [41,49,50]. The antileishmanial activity of G-418 (against 

Leishmania major and Leishmania donovani) is more potent than neomycin and gentamicin 

[39]. In addition, G-418 is used as an agent for selection in cell culture protocols [51]. 

Another antibiotic related to gentamicins production is Antibiotics JI-20 (A and B). This 

antibiotic was first detected during the cultivation of a mutant strain of M. echinospora JI-20 

(NRRL 2953) [52]. Other antibacterial compound named as Antibiotic 460, was produced by 

M. chalcea subsp. flavida NRRL 3222 [53]. 

Sisomicin is also belongs to aminoglycosides with chemical structure close to gentamicin 

C1a and differs by the presence of an unsaturated sugar ring I, Fig. 1(B) [54–57]. The 

antibacterial activity of sisomicin is higher than other structurally related aminoglycosides 

like gentamicin, tobramycin, and amikacin [57]. Tansarli et al. [58] that sisomicin displayed 

in vitro activity against 41% of Enterococcus spp., 97% of Staphylococcus spp., and was 

effective when applied in cream form in the treatment of many diseases. Antibiotic G-52, was 

produced with sisomicin by M. zionensis NRRL 5466, this antibiotic is active against Gram-

positive and Gram-negative bacteria [59,60]. Verdamicin is other antibiotic derived from the 

gray-green colony of M. grisea NRRL 3800. This antibiotic demonstrated activity similar to 

that of gentamicin against members of the family Enterobacteriaceae and against 

Pseudomonas aeruginosa [41,61,62]. Sagamicin (XK-62-2), is other important antibiotic 

produced by soil isolates of M. sagamiensis subsp. nonreducans ATCC 21803 and M. 

sagamiensis ATCC 21826 [63,64]. In 2002, Marone et al., compared the in vitro antibacterial 

activity of sagamicin, gentamicin, tobramycin and norfloxacin. Sagamicin was one of the 

most effective compound against Enterobacteriaceae with a MIC90 of 2 mg/L and presented 

good antipseudomonal activity similar or higher to that of gentamicin [65]. Fortimicins A, B, 

C, D, and KE are also aminoglycoside antibiotics produced by M. olivasterospora MK-70 
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(ATCC 21819) [66–70]. Girolami et al. (1977), showed that the antibacterial effect of 

fortimicin A against Enterobacteriaceae is comparable to amikacin [71]. Other research 

reported also the bactericidal effect of Fortimicin A against Staphylococcus epidermnidis 

[72]. Antlermicins A, B and C are antitumor antibiotics produced by soil isolate of M. 

chalcea subsp. kazitnoensis T-90 [73,74]. Tetrocarcins A, B, C, E1, E2, F and F-1, were first 

isolated from M. chalcea KY11091 and exhibited antibacterial activity against Gram-positive 

bacteria [75–77]. The tetrocarcin was effective against different experimental tumor models 

as mouse sarcoma 180 and mouse leukemia P388 [75,78,79]. 

Combimicins, A1, A2, B1 and B2 are named after their hybridized structure of 

kanamycins and gentamicins. These antibiotics were obtained by growing gentamicin 

producer strain, Micromonospora sp. ATCC 31348, or its gentamicin non-producing mutant 

Micromonospora sp. ATCC 31349. Combimicins have strong antibacterial activities against 

Gram-positive and Gram-negative bacteria [80]. AC6H is antitumor antibiotic, produced by 

M. carbonaceae subsp. carbonaceae K55-AC6. The cytotoxicity of AC6H against P388 

leukemia and B16 melanoma cells were 6.25 and 25 µg/mL, respectively [81]. 

Macrolide antibiotics are part of the polyketide group of natural products. The 

antimicrobial activity of macrolides is mediated through their binding ability to the 50S 

subunit of the bacterial ribosome which inhibits ribosomal translocation, leading to inhibition 

of bacterial protein synthesis. Macrolides were also used for the treatment of non-infectious 

diseases based on their anti-inflammatory and immunomodulatory effects in humans. They 

can inhibit the production of many pro-inflammatory cytokines such as: IL-1, IL-6, IL-8, and 

(TNF)-α [82]. Megalomicins A, B, C1 and C2, are produced by M. megalomicea strains 

isolated from soil. Megalomicins are characterized by their antiparasitic, antibacterial and 

antiviral properties [83–87]. 
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Rosamicin (Rosaramicin), isamacrolide antibiotic produced by M. rosaria NRRL 3718, 

in mixture with other minor secondary metabolites [88–91]. The chemical and biological 

characteristics these compounds are close to erythromycin, Fig. 1(C). Rosamicin have an 

antibacterial effect against Staphylococcus aureus, S. epidermidis, and enterococci [92,93]. 

Juvenimicins, antibacterial antibiotics were produced by M. chalcea subsp. izumensis ATCC 

21561 which was initially isolated from soil sample [94,95]. Juvenimicin C and 5-O-α-L-

rhamnosyltylactone, were obtained from the culture broth of Micromonospora sp. The 

antibiotic Juvenimicin C improved quinone reductase 1 (QR1) enzyme, which is known to 

have the potential of mediating cancer chemopreventive activity [96].  

Mycinamicins were isolated from the culture broth of M. grisseorubida A11725 [97]. 

This speices was able to produce several type of mycinamicins, the strctures of these 

compounds were published by many authors [97–109].  

The antitumor antibiotics Calicheamicins (β 1Br, γ 1Br, α 2I, α 3I, β 1I, γ 1I and ߜ	1 I), 

were obtained from the culture broth of M. echinospora subsp. calichensis. Calicheamicin γ 

1I, Fig. 1(D) exhibited antitumor activity against P388 leukemia and B16 melanoma in in 

vivo testing. In murine tumor models, it was more effective than Adriamycin, the widely 

applied antitumor antibiotic in clinical applications [110–112]. Calicheamicins can be used 

for targeted delivery, through the process of monoclonal antibody conjugation using a 

hydrazone cleavable linker [113]. This ability was used to conjugate calicheamicin with 

monoclonal antibodies recognizing CD33 expressed on myeloid progenitors in patients with 

acute myeloid leukaemia (AML), the result was the active agent of gemtuzumab ozogamicin 

(Mylotarg©). In May 2000, the U.S. Food and Drug Administration (FDA) approved this 

antibiotic under the accelerated approval program to treat patients who are 60 years and older 

in first relapse with CD33+ AML and not considered candidates for chemotherapy [114]. 
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However, in 2010, Pfizer Inc. announced the voluntary withdrawal from the U.S. market after 

questionable safety and efficacy data in post-approval studies [115–117]. 

Izumenolide, Fig. 1(E), is a potent inhibitor of β-lactamases, especially when applied in 

Gram-negative bacteria. This antibiotic produces by M. chalcea subsp. izumensis SC 11133 

[118–121]. Dotriacolide is also β-lactamases inhibitors produced by M. echinospora MG299-

fF35. Dotriacolide is resembles to izumenolide but differs in the number of the O-sulfate 

groups and the ring size of the lactone [122]. It was found that dotriacolide enhanced 

mycinamicin production in M. griseorubida [123].  

Rustmicin (galbonolide A), is an antifungal antibiotic, with insignificant inhibitory effect 

on bacterial cell. This antibiotic is produced by M. chalcea 980-MC1 [124,125]. Clostomicins 

(A, B1, B2, C and D) are a macrolide antibiotics produce by M. echinospora subsp. armeniaca 

KMR-593. Clostomicins exhibited strong antibacterial activities against Gram-positive 

anaerobic bacteria such as Clostridium perfringens and C. difficile [126,127]. 

Quinolidomicins (A1, A2 and B1), were isolated from the fermentation broth of 

Micromonospora sp. JY16 - FERM BP-3940. Quinolidomicin A1 inhibited the growth of 

different tumor cells including multidrug-resistant cells. Quinolidomicin B1 was similarly 

cytotoxic, while Quinolidomicin A2 was inactive against tumor cells [128,129]. 

Pyrrolosporin A is antibiotic compound with antibacterial and antitumor properties. This 

molecule was obtaiend from soil isolate of Micromonospora sp. 2C39217-R109-7 (ATCC 

53791) [130–132]. Cymbimicin A and B are cyclophilin-binding structures, they were 

isolated from the culture broth of Micromonospora sp. A92-313709 (DSM 8594). However, 

cymbimicin A is more biologically active but with six fold lower activity compared to 

cyclosporin A [133]. IB-96212, has been isolated from the fermentation broth of a marine 

Micromonospora sp. L-25-ES25-008. This macrolide showed a very strong cytotoxic activity 

against P388 cell lines [134,135]. Arisostatins (A and B) are members of tetrocarcin class of 
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antibiotics and were isolated from the culture broth of a Micromonospora sp. TP-A0316 

strain. Arisostatins showed antibiotic activity against Gram-positive bacteria as well as 

antitumor effects [136,137]. It was found that Arisostatin A induces apoptosis through the 

activation of caspase-3 and reactive oxygen species generation in AMC-HN-4 cells [138]. 

Micromonosporin A is a 24-membered polyene lactam macrolide, isolated from the 

Micromonospora sp. TT1-11 [139]. Recently, Levantilide C, 20-membered macrolide, was 

isolated from the Micromonospora sp. FIM07-0019. Levantilide C exhibited moderate 

antiproliferative activity against several tumor cell lines [140]. 

Everninomicins (A–E), are complex oligosaccharide antibiotics, produced by M. 

carbonacea NRRL 2972 and M. carbonacea subsp. aurantiaca NRRL 2997 [141,142]. The 

Everninomicin (SCH27899), Fig. 1(F) is produced by M. carbonacea var. africana ATCC 

39149 [143]. Based on in vitro study, everninomicins B and D are active against all Gram-

positive bacteria, Neisseria, and Bacteroides [144]. A multinational study of a total of 33 

laboratories demonstrated that evernimicin possesses high antimicrobial activity against 

Gram-positive organisms, which was higher than that of vancomycin [145]. However, the 

clinical development of evernimicin (Ziracin) was discontinued in Phase III clinical trials, 

one of the reason, it could not be formulated reproducibly to be used as an intravenous drug 

[146,147]. Trehazolin, is a pseudodisaccharide, Fig. 1(G) and was first isolated from the 

culture broth of Micromonospora sp. SANK 62390. The antibiotic properties of this 

compound is mediated through trehalase glycosidase inhibition activity [148]. Trehalamine, 

was obtained by acid hydrolysis of trehazolin. Even though, it is poor inhibitor of trehalase 

but it inhibits more potently rat intestinal sucrase (IC50 6.8 x 10-5 M) than trehazolin [149]. 

Halomicins A, B, C and D belong to the group of ansamycin antibiotics, are produced by 

M. halophytica subsp. halophytica NRRL 2998 and M. halophytica subsp. nigra NRRL 3097. 

These antibiotics are highly active against Gram-positive bacteria. The structure of Halomicin 
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A is shown in Fig. 1 (H) [41,150,151]. Micromonospora produced also oxazoles such as LL-

E19085 alpha and Citreamicins (α, β, γ, ζ and η). These compounds were isolated from the 

fermentation broth of M. citrea NRRL 18351 [152,153]. 

Some species of the genus Micromonospora produce thiopeptide antibiotics, like, Sch 

40832, which produced by M. carbonecea var. africana ATCC 39149. It has potent in vitro 

activity against Gram-positive bacteria [154–156]. The dipeptide, N-(2,6-diamino-6-

hydroxymethylpimelyl)-L-alanine, was isolated from the culture broth of M. chalcea PA-

3534. It exhibits antibacterial activity against E. coli, and the activity is synergistically 

enhanced when applied with cell wall synthesis-inhibitors [157]. The amino acid L-2-(1-

methylcyclopropyl)glycine, produce by M. miyakonensis PA-4046, has also antibacterial 

activity [158,159]. The inhibitor of angiotensin I converting enzyme (ACE), K-13, is a cyclic 

dipeptide, isolated from the culture broth of, M. halophytica subsp. exilisia K-13 [160,161]. 

The antifungal compound Sch 37137 was isolated from the cultured broth of 

Micromonospora sp. SCC 1792 [162]. The antitumor antibiotic Korkormicins, are cyclic 

depsipeptides complex, produced by Micromonospora sp. C39500. The major component of 

the complex, korkormicin A, showed high in vivo antitumor activity against P388 leukemia 

and M109 lung carcinoma. Thus, it considered as potential antitumor agent for cancers with 

wild type p53 [163-166]. Rakicidin A is a cytotoxic agent and isolated from culture broth of a 

Micromonospora sp. R385-2 [167–169] and characterized by cyclic depsipeptide structure 

[167,170,171]. Thiocoraline, Fig. 1(I) is a thiodepsipeptide and produced by both of 

Micromonospora sp. ACM2-092 and Micromonospora sp. ML1. It showed potent cytotoxic 

activity against P-388, A-549 and MEL-28 cell lines, and exhibits a strong antibacterial 

activity against Gram-positive bacteria [172–175]. The antitumor activity of this antibiotic is 

mediated via DNA polymerase alpha inhibition and characterized by high cytotoxic potency 

against cancer cells [176,177]. Recently, it was reported that thiocoraline exhibits cytotoxic 
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activity in BON and H727 cells, activates the Notch pathway in carcinoids and reduces tumor 

progression [178,179]. Maklamicin was obtained from the culture broth of the endophytic 

strain Micromonospora sp. GMKU326. It demonstrates antibacterial activity against Gram-

positive bacteria [180]. 

M-92, is a Naphthoquinones antibiotic complex, produced by M. verruculosa MCRL 

0404. The six major components of the complex antibiotic have a similar type of 

antimicrobial spectrum. Between these components, VA-2 exhibited the most effective 

antimicrobial and antitumor activities [181–183]. Another Naphthoquinone, Crisamicin A, 

Fig. 1(J), is produced by M. purpureochromogenes subsp. halotolerans RV-79-9-101. It 

showed in vitro activity against Gram-positive bacteria, B16 murine melanoma cells, and 

herpes simplex, vaccinia, and vesicular stomatitis viruses [184,185]. 9-Hydroxycrisamicin A, 

was extracted from the broth of Micromonospora sp. SA246. This compound exhibited 

antibacterial and cytotoxic activity [186]. Yoon et al.  (2004), found that 9-hydroxycrisamicin-

A, showed potential for activating hepatitis B virus (HBV) replication [187]. K-259-2, an 

Anthraquinone, is inhibitor of Ca2+ and calmodulin-dependent cyclic nucleotide 

phosphodiesterase, it was obtained from the fermentation broth of M. olivasterospora K-259 

[188]. Dynemicin A, was isolated from the culture broth of M. chersina ATCC 53710 and 

exhibited antibacterial and cytotoxic activity [189-191]. Deoxy-dynemicin A, was produced 

together with dynemicin A in culture of M. globosa FERM P-10651 [192]. Lupinacidins A, B 

and C, are produced by M. lupini Lupac 08, isolated from root nodules of Lupinus 

angustifolius collected in the mid-west Spain [193,194]. Lupinacidin C displayed a potent 

anti-invasive activity against murine colon 26-L5 carcinoma cells [194].  

Streptonigrin and 7-(1-methyl-2 oxopropyl) streptonigrin are two other bioactive 

compounds produced by Micromonospora sp. IM 2670. Streptonigrin can induce apoptosis 

through a p53-dependent pathway in human neuroblastoma cells [195]. The quinocycline 
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antibiotic Kosinostatin, was isolated from the culture broth of Micromonospora sp. TP-

A0468. It showed antibacterial and cytotoxic activity [196,197]. Spartanamicins A and B, are 

two antifungal anthracycline antibiotics produced by Micromonospora sp. ATCC 53803, 

isolated from a potted soil containing asparagus (Asparagus officinalis L.) plants [198]. 

Cororubicin, Fig. 1(K), generated superoxide radicals in KB human epidermoid cancer cells 

and N18-RE-105 neuronal hybridoma cells, and showed cytotoxicity. This antibiotic is 

produced by Micromonospora sp. JY16 isolated from soil [199]. Micromonomycin is 

antibacterial anthracycline compound, showed potent inhibitory activity against S. aureus, 

Streptococcus pneumoniae, and supersensitive E. coli, and also displayed weak antifungal 

activity against S. cerevisiae and C. albicans [200]. In 2012, Sousa et al., isolated 

Micromonospora strains associated with the tunicate Eudistoma vannamei and can produce 

four new anthracyclinones, two of them were cytotoxic against human colon adenocarcinoma 

cell line HCT-8 [201]. 

Hazimicins, a class of broad spectrum antibiotics, were isolated from the culture broth of 

M. echinospora var. challisensis SCC 1411 [202]. The nucleoside antibiotics, Dapiramicin A 

and B, have been isolated from the fermentation broth of Micromonospora sp. SF-1917. 

Dapiramicin A was highly effective in the control of sheath blight, a destructive disease of 

rice plants caused by Rhizoctonia solani, in a pot test [203,204]. Neihumicin was isolated 

from the fermentation broth of M. neihuensis Wu NH3-1 and shows in vitro cytotoxicity 

against KB tissue culture cells as well as antifungal activity against S. cerevisiae ATCC 9763 

[205-207]. Sibanomicin, is a pyrrolo-[1,4]-benzodiazepine antitumor antibiotic produced by a 

culture of Micromonospora sp. SF2364 [208]. Macquarimicins (A, B and C), were produced 

by the two strains M. chalcea AB 965S-73 and M. chalcea AB 969J-62. Macquarimicin B has 

inhibitory activity against the leukemia cell line P-388 [209,210]. A naturally occurring 

dibenzodiazepine, BU-4664L, was produced in fermentation broth of Micromonospora sp. 
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ATCC 55378. The compound possesses anti-inflammatory and anti-tumor activities [211]. 

The initial structure assigned for BU-4664L was revised by Igarashi et al. [212]. In 2010, 

Miyanaga et al. demonstrated that BU-4664L suppresses invasion and angiogenesis in vitro. 

It inhibited the gelatinase activities of MMP-2 and MMP-9 with an IC50 value of 0.46 µg/mL 

and 0.60 µg/mL, respectively [213]. 

YM-47515, is an isonitrile antibiotic, produced by M. echinospora subsp. echinospora 

Y-03559J and showed antimicrobial activity against Gram-positive bacteria [214]. The 

antibiotic glutarimide streptimidone, Ao58A, showed a high antifungal activity against some 

plant pathogenic fungi and inhibit the growth of Phytophthora capsici, Didymella bryoniae, 

Magnaporthe grisea, and Botrytis cinerea in the range of 3-10 µg/mL-1 of MICs [215]. 

Bravomicins, are obtained by fermentation of a strain of M. polytrota, isolated from soil 

sample. Six bioactive compounds, designated bravomicins (A–F), are obtained and found to 

have antibacetrial activity against methicillin resistant S. aureus (MRSA) and multiply 

resistant E. faecium (MREF)  [216]. The initial structure proposed by the US 5,994,543 patent, 

was revised by Banskota et al. (2009), and they also suggested a strong similarity between 

the structures of TLN-05220, echinosporamicin and bravomicin A [217]. Staurosporine, 4'-N-

methyl-5'-hydroxystaurosporine and 5'-hydroxystaurosporine, were produced by the marine 

strain, Micromonospora sp. L-31-CLCO-002, isolated from Sponge Clathrina coriacea. They 

showed cytotoxic activity [218]. SB-219383, the potent and selective inhibitor of bacterial 

tyrosyl-tRNA synthetase, was isolated from Micromonospora sp. NCIMB 40684 [219,220]. 

Lomaiviticins A and B, are produced by M. lomaivitiensis LL-37I366, isolated from ascidian 

Polysyncraton lithostrotum. Lomaiviticin A and B were demonstrated to be potent DNA 

damaging agents by the biochemical induction assay (BIA). Lomaiviticins C−E, were 

isolated recently by Woo et al. (2012). It was found that the dimeric diazofluorene of (−)-

lomaiviticin exhibit antiproliferative activity [221,222]. The lomaiviticin A was also tested 
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against different cancer cell lines and showed cytotoxicity with IC50 values ranging between 

0.01 and 98 ng/mL. Lomaiviticins A and B showed also antibacterial activity against Gram-

positive bacteria [223]. 

R176502, is an antiproliferative bafilolide metabolite, extracted from liquid cultures of 

Micromonospora sp. JS1035 [224]. Sch725418, is a Diketopiperazine, isolated from 

Micromonospora sp. It exhibits inhibitory activity against a supersensitive strain of S. 

cerevisiae [225]. Echinosporamicin, an antibiotic produced by M. echinospora subsp. 

echinospora LL-P175, contain aromatic polycyclic system and a piperazinone moiety. It 

exhibited potent activity against methicillin-resistant Staphylococci and vancomycin-resistant 

Enterococci strains [226]. Diazepinomicin is a dibenzodiazepine alkaloid compound 

originally isolated from a marine Micromonospora sp. DPJ12 [227]. It was also produced by 

Micromonospora sp. RV115 strain isolated from the sponge Aplysina aerophoba [228]. 

Preclinical data demonstrated that diozepinomicin is a targeted anticancer drug with dual 

activity: selective binding to the peripheral benzodiazepine receptor (PBR), which induces 

tumor apoptosis, and inhibition of the Ras/MAP kinase signaling pathway [229]. It showed 

also antioxidant activity for diazepinomicinin human kidney (HK-2) and human 

promyelocytic (HL-60) cell lines. In addition, it exhibits antiparasitic activity against 

trypomastigote forms of Trypanosoma brucei with IC50 of 13.5 mM [230]. Retymicin, 

Galtamycin B, Saquayamycin Z and Ribofuranosyllumichrome, were produced by 

Micromonospora sp. Tü 6368. Retymicin, galtamycin B and saquayamycin Z show cytostatic 

activity against several human tumor cell lines [231,232].  

In addition to these compounds, many other antibiotics previously produced by other 

actinomycetes were also produced by Micromonospora. Neomycin B, which was isolated 

originally from Streptomyces fradiae in 1949, was also found in the culture broth of 

Micromonospora sp. 69-683 [233]. The comparison of aminoglycoside acetyltransferase-
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encoding gene (aac), and aminoglycoside phosphoryltransferase gene (aph) of Streptomyces 

fradiae and Mcromonospora chalcea indicates considerable divergence [234,235]. Others 

antibiotics produced by other genera were also reported by genus Micromonospora. These 

include Primycin [41,236], Rifamycins [41,237,238], Erythromycin B [41,239]. 

Actinomycins [240,241], Bottromycins [41], and Telomycin [242–244]. 

 

4. Different strategies for the development of new antibiotics from the genus 

Micromonospora. 

Understanding how the researchers identified antibiotics produced by Micromonospora 

strains in the past, and updating knowledge for the new analytical, biological and 

bioinformatics tools, can help to improve the strategy for the discovery of new chemical of 

antibiotic properties, which can reduce the cost and the time during biomolecule discovery. 

Fig. 2 summarizes the complete biomolecule discovery platform of potential antimicrobial 

activity from the genus Micromonospora. 

The isolation source is important for the isolation of new strains, which can produce new 

compounds. In the past, only cultured Micromonospora strains were used as source of 

antibiotics, but the developments of culture-independent methods increased the potential of 

novel molecule discovery. Using metabolomics-based tools can help for the early screening 

to identify new molecule. Utilization of genetic engineering, metabolomic pathways 

engineering, bioprocess development, and biotransformation techniques are widely applied 

not only to increase yields of production of secondary metabolites but also to lead to the 

synthesis of new more effective compounds. In addition, synthetic chemistry and structure 

modification methods are also important as component of the drug discovery platform in 

order to obtain a bioeffective final product approved by the regulatory authorities. 
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4.1. Natural habitat of Micromonospora and the research of new resources 

In general, soil is the main source for the isolation of Micromonospora producing antibiotics 

strains (Table 1). Also, they have been found to be constituents of endophytic actinobacterial 

populations recovered from plant tissues; they are a normal occupant of actinorhizal nodules 

[245]. In aquatic ecosystems (freshwater and marine environments), they were isolated from 

water samples, sediments, and aquatic organisms such as ascidians, sponges, soft coral and 

molluscs [246]. From the geographical point of view, from the data presented in Table 1, the 

highest numbers of Micromonospora producing antibiotics strains were isolated from Japan 

and United States. The 6 new species of Micromonospora discovered in 2014, was isolated 

from China, and one of them was isolated from Chinese black ant (Polyrhachis vicina Roger) 

[22–24,247–249]. Biogeographic studies of the distribution of bacterial strains producing 

secondary metabolites, are helpful for the selection of sampling coordinates [250]. For 

example, in the recent study of Charlop-Powers and his group was focused on the 

comparative biosynthetic gene richness and diversity of 96 soil microbiomes from different 

soil samples in USA. They used 454-pyroseqencing of non-ribosomal peptide adenylation 

(AD) and polyketide ketosynthase (KS) domain and concluded that the arid soils show the 

richest observed biosynthetic diversity, whereas brackish sediments and pine forest soils 

show the least [251]. 

 

4.2. Culture depending approach 

The cultivation approach is still important in the screening for the discovery of new natural 

products. Different methods of sample pretreatment and medium formulation were used in 

the isolation and screening of Micromonospora species. Most of these methods use the 

resistance characteristic of Micromonospora spores as target [14,17,252,253]. For example, it 

was found that sample pretreatment at 65°C for 30 min is effective for the isolation of 
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Micromonospora colonies from the estuarine sediments [254]. Bacteriophages were also 

applied in the screening of rare actinomycetes that can produce bioactive compounds [255]. 

The innovation of new isolation methods, can be useful for the cultivation of new 

Micromonospora strains, these include novel media formulation, new pretreatment protocols, 

and in situ cultivation strategy [256]. The best example is that of the isolation of the 

teixobactin producer strain Eleftheria terrae using new technique called isolation Chip 

Technique (iChip) [12]. 

 

4.3. Culture-independent approach 

In the past, only cultured microorganisms were the source of natural product drug discovery, 

but the developments of culture-independent methods have allowed additional insights into 

the drug discovery research. Metagenomics is a reliable approach for the study of the 

micororganisms diversity, the measure of the potential reservoir of natural compounds and 

antibiotic resistance genes in the cultured and uncultured microbial population in the 

environment. In the same manner, meta-transcriptomics and meta-proteomics can also be 

used. The development of the next-generation deep sequencing, bio-informatics tools and 

available databases, represent a strong support to this line of research [257–262].  

 

4.4. Metabolomics-based approaches for secondary metabolite discovery 

Determination of the microbial metabolome is an important way for natural product 

discovery, and it is supported with the recent development of tools and methods that can 

detect and quantify metabolites [263–267]. The emerging of mass spectrometry techniques 

allowed the direct analysis of microbial colonies [268]. The matrix-assisted laser 

desorption/ionization mass spectrometry (MALDI-TOF MS) is used for the fast identification 

of bacterial and fungal microorganisms [269]. The MALDI-TOF MS was used before in 
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characterization of some Micromonospora species [270]. The recent research has used this 

method for the rapid in situ detection of actinomycins in surface extracts of Streptomyces 

cells picked from agar plates [271]. Others promising methods of imaging mass spectrometry 

and real-time mass spectrometry will be also good tools for the identification of natural 

product from bacteria in the future [268], For example, Hsu et al. (2013), used ambient 

Electrospray Ionization Flow-Probe, to study in Real-Time metabolomics on living 

microorganisms [268,272]. On the other hand, the use mass spectrometry methods for 

microorganisms isolated from extreme environments may encountered some problems, like 

the database of MALDI TOF MS which need extension for reliable identification of bacteria 

from extreme environments [273]. For the best use of these methods for the identification and 

the early screening of Micromonospora strains, a comprehensive database of bioactive 

compounds should be available for comparison.  

Others platforms such as Nuclear Magnetic Resonance (NMR), Gas Chromatography-

Mass Spectrometry (GC/MS), and Liquid Chromatography-Mass Spectrometry (LC/MS) are 

also useful in metabolomics study. Nowadays, LC/MS is the most widely used method in 

metabolomic analysis, due to its ability to separate and detect a wide range of molecules with 

high sensitivity [265,274]. Hou et al. [275] found a principal component analysis (PCA) 

using LC/MS is effective in the screening of marine bacterial strains of high metabolic 

activities and the detection of new products in drug discovery programs. Micromonolactam, 

produced by Micromonospora sp. CMS I1-30 and Micromonospora sp. CMS I2-32, was 

discovered during routine chemical screening (LC-DAD-ESIMS) of chemical fraction library 

of marine actinobacteria [276]. Recently, the secondary metabolites Neomacquarimicin, 

produced by Micromonospora sp. NPS2077, was identified during screening program for 

secondary metabolite with a polycyclic ring system from a bacterial species using LC-

MS/UV-based chemical analysis [277]. In addition, the metabolomics methods are adapted to 
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be used in the high-throughput discovery metabolomics platforms. Thus, it is now possible to 

do mass spectrometric analysis of several hundred metabolites, with dense coverage of 

primary metabolism, in complex biological extracts and at throughputs of >1000 samples per 

day and the process can also be directed to specific target like enzyme activity [278,279]. The 

recent Advances in Infrared and Raman spectroscopy are also helpful in the rapid and low 

cost differentiation, identification and metabolome characterization of microbial strains 

[280,281]. Zhao et al.  [282] studied FT-IR spectra of Micromonospora strains isolated from 

coastal sediments and found that this method can be applied to indicate in which 

environmental isolates have been cultured previously. 

 

4.5. Screening of biological activities 

It is essential before starting of any screening program of microorganisms for therapeutic 

metabolites production to select biological target. The classical screening methods were 

focused at first on antimicrobial activity (i.e. antibacterial, antifungal, anti-parasitic and 

antiviral). After the emergence and widespread of cancer and other new diseases, the current 

screening also include anticancer, cytotoxic, antioxidant and anti-inflammatory activities 

[246,283]. Nowadays, screening could include more specific target, for example: the 

antitumor antibiotics calicheamicins were discovered in a fermentation products screening 

program by the use of the biochemical induction assay (BIA), which utilized a genetically 

engineered strain of E. coli to detect DNA damaging agents [111]. MS-444, is naphtho[2,3-c] 

furan derivatives, Fig. 1(L), also exhibited myosin light-chain kinase inhibition activity 

(MLCK), without any antimicrobial effect [284,285]. This compound interfere with HuR 

RNA binding, HuR trafficking, cytokine expression and T-cell activation and showed good 

pharmacokinetics and low toxicity in mice [286]. Antascomicins, were obtained from a wide 

range screening program of more than 12,000 strains for selective isolation of macrophilin-
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binding metabolites. The most active strain was identified and given the name 

Micromonospora sp. A92-306401 and deposited in the German collection of microbes and 

cell culture under accession No. (DSMZ 8429). Antascomicins are structurally related to 

FK506, bind strongly to FKBP12 (also known as FKBPA1), but do not show 

immunosuppressive activity [287]. In addition, the presence of large therapeutic target 

databases is also helpful for the development of new biological assay [288]. Currently, with 

the development of High Throughput Screening (HTS) process, it is possible for concurrent 

screening of multiple biological activities of a large number of compounds [289]. 

 

4.6. Genomic and metabolomic pathways engineering 

Determination of gene cluster required for the biosynthesis of certain metabolite can help to 

understand the possible biosynthetic pathways and thus used for the optimization of 

secondary metabolites production by metabolic engineering tools. The Gentamicin gene 

cluster was sequenced [43], it is a total of 32 ORFs have been assigned to the gentamicins 

gene cluster, 19–25 could encode biosynthetic enzyme functions, like gntK, a gene required 

for the methylation of purpurosamine C-6′ in gentamicin biosynthesis [42,44]. The assigning 

functions to individual gene in gentamicin gene cluster, facilitated the study of diverse 

antibiotic biosynthesis pathways. Several biosynthetic pathways for gentamicin C complex 

production were proposed [43,44,290]. In 2014, Guo et al., gave information about late stage 

biosynthesis of gentamicins from the pseudo-disaccharideparomamine to the branch point at 

gentamicin X2, which was known substrate for C-methylation at C-6' to form G418 catalyzed 

by the radical SAM-dependent enzyme GenK, might instead undergo oxidation at C-6' to 

form an aldehyde, catalyzed by the flavin-linked dehydrogenase GenQ [290]. Recently, 

Huang et al. [291] identified four key enzymes that lead from the first-formed 

pseudotrisaccharide to gentamicin X2. These data can help for the optimization of secondary 
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metabolites production. For example, to obtain a gentamicin C1a-overproducing strain, gacD 

gene was inactivated in M. echinospora. The inactivation of gacD blocks the metabolic 

pathways from X2 to G418 and leads to the accumulation of gentamicin C1a [292]. Through 

the use of combined traditional and recombinant genetic techniques it was possible to obtain 

strain with improved G418 production by 19 fold with minimal by product formation [293].  

The function of cytochrome P450 enzyme-encoding genes rosC and rosD in the 

biosynthesis of rosamicin by M. rosaria was reported [294]. The production of rosamicin 

derivatives in M. rosaria was enhanced by the introduction of D-mycinose biosynthetic gene 

with PhiC31-derived integration vector pSET152 [295]. Recent research showed also that the 

introduction of d-mycinose biosynthesis genes in mycinamicin II biosynthesis gene cluster of 

M. guriseorubida A11725 into the rosC and rosD disrupted mutants of M. rosaria IFO13697 

enhanced the production process. The resulting engineered strains, M. rosaria TPMA0054 

and TPMA0069, produced mycinosyl rosamicin derivatives, IZIV and IZV, respectively. 

IZIV was identified as a novel mycinosyl rosamicin derivative, 23-O-mycinosyl-20-deoxo-

20-dihydrorosamicin [296]. By using genome scanning data of the hazimicin producer, M. 

echinospora ssp. challisensis NRRL 12255, it was possible to isolate TLN-05220, TLN-

05223, which have cytotoxic activities against various human tumor cell lines [217]. 

Others gene cluster and biosynthetic pathways of Micromonospora antibiotics have been 

reported, like the biosynthetic gene cluster of thiocoraline [297–299], evernimicin 

biosynthetic gene cluster from M. carbonacea var. africana ATCC39149 [143], mycinamycin 

gene cluster and biosyntheic pathway [300–303], and diazepinomicin biosynthetic pathway 

[304–306]. More recently, methionine gamma-lyase gene was identified in the calicheamicin 

biosynthesis gene cluster of M. echinospora [307]. 

 

4.7. Bioprocess development and Biotransformation 
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The aim of the bioprocess development is to increase yields of secondary metabolites 

production. Bioprocess is influenced by several factors, from the culture medium design 

(nutrients composition and concentrations), to cultivation parameters (temperature, pH, 

agitation, aeration, etc…) [308–310]. Therefore, it is important to optimize all these 

parameters for maximal production yield using different approaches and also to transfer the 

process from small laboratory scale to pilot and large scale bioreactor level.  

For example, gentamicin is manufactured through a complex process using 

Micromonospora strains. In general, the gentamicin is produced in submerged fermentation. 

The production medium optimization is an empirical process, as medium must be economic 

with high yield of production. Also it is important to use ingredients which help the down-

stream process [311]. Different Carbon sources were used in gentamicin production such as 

starch, sucrose, and soybean oil [312–316]. Nitrogen sources are important for cell growth 

and antibiotic production. Soybean meal, yeast extract, peptone and corn steep liquor have 

been reported as suitable substrates for gentamicin production [312,313,317,318]. Di-

potassium phosphate (K2HPO4) was usually the source of phosphate, and it is essential for the 

growth and antibiotic production [311]. It is apparent that cobalt is a requisite for the 

gentamicin synthesis. Charney et al. [312] found that medium must contain at least 0.01 

µg/ml of cobalt (as CoCl2.6H2O), which is equivalent to 2.510-9 gram of cobalt per 

milliliter. In 2006, Himabindu et al. [315] used Response Surface Methodology (RSM) for 

the medium optimization to increase production of gentamicin by M. echinospora ATCC 

15838. They found that a medium with Starch (9 g/L), Soyabean meal (3 g/L), K2HPO4 (0.9 

g/L) and CoCl2 (0.001g/L), can give 880 (mg/L) of gentamicin. However, the problem of 

using complex medium components is seasonal variations and consistency of the chemical 

composition, which affect the yiled of the production process [311,319]. The pH of the 

culture medium can affect growth and gentamicin production in submerged cultures. Charney 
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et al. [312], found that the optimal pH for production lies between 6.9 and 7.0. Other research 

conducted by Abou-zeid and Eissa [313] showed that the most suitable initial pH for 

antibiotic production was between 7 and 7.5. The dissolved oxygen (DO) is other critical 

limiting factor for both growth and gentamicin production. It was reported that gentamicin 

production reachs its maximal production when keeping the DO level at 40% saturation 

[311,320]. In addition, physiological status and size of the inoculum can also play critical role 

in gentamincin production process [311,321].  

In general, gentamicin is usually produced as intracellular product. Different physical 

and chemical approaches were used to extract the antibiotic from the cells. Among them, 

ultrasonic treatment was the most efficient method in this process [317,322]. However, for 

large scale production, gentamycins are usually recovered by adsorption, solvent extraction, 

and crystallization [311]. One of the first reports of gentamicin purification was the work of 

Luedemann and Weinstein in 1963, in which they used cationic and anionic exchange 

adsorption column and methanol extraction in the purification process of gentamicin [323]. 

As gentamicin is a complex consisting of several minor and three major components, the 

proportions of these components can vary depending on the fermentation process, and some 

of the impurities can be also toxic [311,324]. Therefore, pharmaceutical industries are usually 

earger to develop more powerful methods of separation. In 2012, Grote et al. [324] described 

a method for synthesis of a single conjugate of gentamicin. They found that the reaction of 

the gentamicin complex with excess benzyl chloroformate provided a mixture of the amine 

protected components which can be separable by preparative HPLC using UV detection, 

which give opportunity to get a single gentamicin conjugate.  

Gentamicin is administered intravenously, and the bactericidal activity is “concentration-

dependent”. Therefore, the dose used should be carefully adjusted. Also, gentamicin is not 

metabolized and eliminated by the kidneys and overdoses can increase the risks of renal 
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toxicity and ototoxicity [325,326]. Routinely, in the pharmaceutical industry, and because of 

the chemical nature of the gentamicin complex, only the relative percentage of its major 

constituents are measured by liquid chromatography combined with pulsed electrochemical 

detection (LC–PED). Microbiological assays, immunoassays, and ELISA methods also can 

be used in gentamicin analysis [327]. Li et al. [328], reported a LC–PED method, with a 

reversed-phase C18 column and a mobile phase consisting of trifluoroacetic acid (TFA), 

pentafluoropropionic acid (PFPA), sodium hydroxide and acetonitrile, which showed better 

separation and more sensitive detection of the gentamicin components than the method using 

a polymer column. In the same time, Vucicevic-Prcetic et al. [327], developed a new 

analytical method for the determination of gentamicin based on Liquid Chromatography with 

tandem Mass Spectrometry (LC/MS/MS), which provides complete base line separation of 

components C1, C1a, C2, C2a and C2b according to the European and British Pharmacopoeias. 

Biotransformation approach is also an efficient tool for the modification of existing 

antibiotic molecule to create new therapeutic agents. The addition of analogues of 2-

deoxystreptamine to mutant of M. inyoensis NRRL 3292, the sisomicin-producing organism, 

resulted in the formation of new antibiotics called Mutamicins [329]. Mutamicin 1, produced 

by the addition of streptamine to the fermentation broth, and Mutamicin 2 is produced by the 

addition of 2, 5-dideoxystreptamine [329]. Other research showed also that employing a 

recombinant Streptomyces venezuelae strain as a microbial catalyst, a reduced macrolide, 10, 

11-dihydrorosamicin, was created from rosamicin macrolide. The new rosamicin analog 

showed 2-4-fold higher antibacterial activity against two strains of methicillin-resistant S. 

aureus compared to its parent rosamicin [330]. In the presence of serum, rustmicin rapidly 

epimerizes at the C-2 position and is converted to a γ-lactone, a product that is devoid of 

activity. In order to synthesize derivatives of Rustmicin with improved chemical stability and 
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antifungal activity profiles, Shafiee et al. [331,332], used Streptomyces halstedii, in order to 

synthesize more stable compounds by the way of microbial hydroxylation. 

 

4.8. Synthetic chemistry and structure modification 

In many cases, it is difficult to use antibiotics with their original structure directly as 

therapeutic agents. This based on the development of antibiotic resistance strains, cytoxicity 

of the molecule, and improper pharmacokinetic and pharmacodynamics of the compound. 

For example, Gentamicin C1a can be used as a starting material for etimicin production, 

which is an antibiotic against drug-resistant bacteria and exhibit antimicrobial activity against 

both Gram-positive and Gram-negative bacteria [333,334]. Isepamicin is a semi-synthetic 

derivative of gentamicin B, which possesses a high level of stability to aminoglycoside 

inactivating enzymes and low levels of toxicity to the kidney and inner ear. In addition, 

isepamicinis active against Gram-negative bacteria with resistance to amikacin and other 

aminoglycosides [335–337]. Netilmicin is a semisynthetic 1-N-ethyl derivative of sisomicin 

has similar activity as for gentamicin but less toxic [338]. Plazomicin, was synthetically 

derived from sisomicin by appending a hydroxy-aminobutyric acid substituent at position 1 

and a hydroxyethyl substituent at position 6′. It is characterized by a dose-depending activity 

against both Gram-positive and Gram-negative pathogens [339–341]. In addition, derivative 

6’-hydroxysisomicin, exhibits promising activity against a broad range of protozoan parasites 

[342]. Thiochoraline can be chemically synthesis [343,344], and different product were 

derivative from thiocoraline, like antitumor antibiotics NMe-azathiocoraline and 

Oxathiocoraline [345–347]. Already MS-444 and Rakicidin A have been also successfully 

chemically synthesized [171,348]. 

 

5. Future perspectives 
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The genus Micromonospora had been the source of many drugs, some of them, like 

gentamicin, are considered as essential to the global health medical system [46]. Although, 

there were some disappointments, despite the large number of papers and patents published, 

few number of bioactive molecules from this group of microorganisms reached the 

pharmaceutical market. In many cases, the drug development process was terminated at 

clinical trial level such as in case of evernimicin and rosaramicin [147]. However, new 

legislations and investments in biotechnology, can help the antibiotic development. In the last 

decade 11 new antibiotics were approved, and four in 2014 alone [9,349]. The 

biopharmaceutical industry need to be adapted to the global antibacterial drugs market, which 

is to reach an estimated value of $45.09 billion in 2019 [350], and the current prescription 

data for aminoglycosides as antimicrobial represent over a $500 million in U.S market. That 

is why, some biopharmaceutical companies start to acquire the intellectual property rights 

covering next-generation antibiotic derivatives, which retain the biologic activity, and appear 

less cytotoxic [350,351]. Also, reviving old antibiotics could be a good approach [352]. With 

the recent advances in screening program management, and the availability of more 

sophisticated analytical, biological and bioinformatics tools, the study of the genus 

Micromonospora is still important in the race of the discovery of new therapeutic agents. The 

investigation of new isolation sources and the use of innovative methods are good 

alternatives for the discovery of novel antibiotics from the genus Micromonospora.  
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Antibiotics molecules produced by the genus Micromonospora 

 

Legend for Figures 

Fig. 1. Chemical structure of some antibiotics produced by different Micromonospora strains. 

The molecular structures were downloaded from ChemSpider [356]. 

 

Fig. 2. Different approaches used in the development of new antibiotics from the genus 

Micromonospora. 



Table 1. Antibiotics molecules produced by the genus Micromonospora 



Antibiotic Class Strain Source Year  Biological Activity Ref. 
Micromonosporin Chromoprotein Micromonospora sp. Soil 1947 Antibacterial activity [29] 
Actinomycins Polypeptide Micromonospora sp. 608 - 1951 Anticancer  activity [236] 
Gentamicins Aminoglycosides M. echinospora NRRL 2953 

M. echinospora NRRL 2985 
Soil, New York, USA 
Soil, New York, USA 

1963 Antibacterial activity [37] 

Everninomicins Oligosaccharides M. carbonacea NRRL 2972 
M. carbonacea subsp. aurantiaca NRRL 
2997 
M. carbonacea var. africana ATCC39149 

Soil, New York, USA 
Soil, New York, USA 
Soil, Kenya 

1964 Antibacterial activity [38, 
137] 

Halomicins Ansamysins M. halophytica subsp. halophytica NRRL 
2998 
M. halophytica subsp. nigra NRRL 3097 

Salt pool, Syracuse,  
New York, USA 

1967 Antibacterial activity [146] 

Antibiotic 460 Aminoglycosides M. chalcea subsp. flavida NRRL 3222 Soil, New York, USA 1969 Antibacterial activity [50] 
Megalomicins Macrolides M. megalomicea subsp. megalomicea NRRL 

3274 
M. megalomicea subsp. nigra NRRL 3275

Soil 1969 Antibacterial activity  
Antiparasitic activity 
Antiviral activity  

[79, 
81] 

Primycin Macrolides M. galeriensis - 1969 Antibacterial activity 
Antifungal activity 

[38, 
232] 

Sisomicin Aminoglycosides M. inyoensis NRRL 3292 Soil, California, USA 1970 Antibacterial activity [51] 
Rosamicin  Macrolides M. rosaria NRRL 3718 Soil, Texas, USA 1972 Antibacterial activity [84] 
Neomycin B Aminoglycosides M. chalcea 69-683 - 1973 Antibacterial activity [229] 
Verdamicin Aminoglycosides M. grisea NRRL 3800 Soil, Kansas, USA. 1974 Antibacterial activity [59] 
Mutamicins Aminoglycosides M. inyoensis NRRL 3292 Soil, California, USA 1974 Antibacterial activity [325] 
Sagamicin Aminoglycosides M. sagamiensis subsp. nonreducans ATCC 

21803  
M. sagamiensis ATCC 21826 

Soil, Illinois, USA 
Soil,  Kanagawa, Japan 

1974 Antibacterial activity [60, 
61] 

Antibiotic G-418 Aminoglycosides M. echinospora NRRL 5326 Soil 1974 Antibacterial activity 
Antiparasitic activity 
Selective agent for 
mammalian cell 
studies 

[46, 
47] 

Bottromycin Macrocyclic 
peptide 

M. chalcea FERM-P 1823 - 1974 Antibacterial activity [38] 

Antibiotics JI-20 Aminoglycosides M. echinospora NRRL 5467 Soil, New York, USA 1975 Antibacterial activity [38, 
49] 



Rifamycins Ansamysins M. lacustris ATCC 21975 Mud, Connecticut, USA 1975 Antibacterial activity [233] 
Antibiotic G-52 Aminoglycosides M. zionensis NRRL 5466 Soil, Utah, USA 1975 Antibacterial activity [56] 
Fortimicins Aminoglycosides M. olivasterospora ATCC 21819 Soil. Hiroshima, Japan 1976 Antibacterial activity [63] 
Juvenimicins Macrolides M. chalcea subsp. izumensis ATCC 21561 Soil, Osaka, Japan  1976 Antibacterial activity [90] 
Erythromycin B Macrolides Micromonospora sp. 1225 - 1976 Antibacterial activity [38] 
Mycinamicins Macrolides M. grisseorubida A11725 Soil, Toyama, Japan 1980 Antibacterial activity [93] 
Antlermicins  Aminoglycosides M. chalcea subsp. kazitnoensis T-90 Soil, Akita, Japan 1980 Antibacterial activity 

Anticancer activity 
[70, 
71] 

Tetrocarcins Aminoglycosides M. chalcea  KY11091 Soil, Miyagi, Japan 
 

1980 Antibacterial activity 
Anticancer  activity 

[349] 

Izumenolide Lactones M. chalcea subsp. izumensis SC  11133 Soil, South Africa 1980 Antibacterial activity [114] 
N-(2,6-Diamino-6-
hydroxymethylpimel
yl)-L-alanine  

Dipeptide M. chalcea PA-3534  Soil, Ariake  
Bay, Fukuoka. Japan 

1981 Antibacterial activity [153] 

L-2-(1-
Methylcyclopropyl) 
glycine 

Amino acid M. miyakonensis PA-4046 Soil, Okinawa, Japan 1981 Antibacterial activity [154, 
155] 

Combimicins Aminoglycoside Micromonospora sp. ATCC 31348 
Micromonospora sp. ATCC 31349 

Soil, Japan 1981 Antibacterial activity [76] 

Dotriacolide Lactones M. echinospora MG299-fF35 Soil, Hokkaido, Japan 1981 Antibacterial activity [118] 
M-92 Naphthoquinones M. verruculosa M-92 Soil, Nago City, 

Okinawa, Japan 
1982 Antibacterial activity 

Anticancer  activity 
[177] 

Hazimicins Nitriles M. echinospora var. challisensis SCC 
1411 

Soil, Challis, Idaho. USA 1983 Antibacterial activity 
Anti- yeast avtivity 

[198] 

Dapiramicin Ribonucleosides Micromonospora sp. SF-1917 Soil, Japan 1983 Antifungal activity [199] 
Rustmicin  Macrolides M. chalcea 980-MC1 Soil, Japan 1985 Antifungal activity  [120] 
Clostomicins Macrolide M. echinospora subsp. armeniaca KMR-

593 
Soil, Niigata, Japan 1986 Antibacterial activity [122] 

Crisamicin A Naphthoquinones M. purpureochromogenes subsp. 
halotolerans RV-79-9-101 

Mud sample, Philippines 1986 Antibacterial activity 
Anticancer activity 

[180] 

K-13 Cyclic Peptides M. halophytica subsp. exilisia K-13 Soil 1987 Inhibitor of angiotensin 
I converting enzyme 
(ACE) 

[156] 

K-259-2 Anthraquinone M.  olivasterospora K-259 Soil, Nagaizumi-cho, 
Sunto-gun, Shizuoka, 
Japan 

1987 Inhibitor of Ca2+ and 
calmodulin-dependent 

[184] 



cyclic nucleotide 
phosphodiesterase 

Sch 37137 Dipeptides Micromonospora sp. SCC 1792 Soil, South Africa 1988 Antifungal activity [158] 
Neihumicin Pyrazines M. neihuenis NH3-1 Wu Soil, Nei-Hu, near 

Taipei, Taiwan 
1988 Cytotoxic activity  

Antifungal activity  
[201] 

Sibanomicin 
 

Pyrrole-
Benzodiazepines 

Micromonospora sp. SF2364  1988 Anticancer  activity [204] 

LL-E19085 alpha Oxazoles M. citrea NRRL 18351 Soil, Tanzania 1989 Antibacterial activity [148] 
Calicheamicins Enediynes M. echinospora sp. calichensis. NRRL 

15839 
M.  echinospora sp. calichensis NRRL 
15975 
M.  echinospora sp. calichensis NRRL 
18149 

Soil, Texas, USA 1989 Antibacterial activity 
Anticancer  activity 

[106, 
107] 

Citreamicins Oxazoles M. citrea NRRL 18351 Soil, Tanzania 1990 Antibacterial activity [149] 
Dynemicin A Anthraquinone M. chersina ATCC 53710 Soil, India 1989 Antibacterial activity 

Anticancer activity 
[185] 

Deoxydynemicin A Anthraquinone M. globosa FERM P-10651 Soil, Japan 1990 Antibacterial activity [188] 
Trehazolin Pseudodisaccharide Micromonospora sp. SANK 62390 Soil, Tochigi, Japan 1991 Trehalase glycosidase 

inhibitor 
[144] 

Spartanamicins  Anthracycline Micromonospora sp. ATCC 53803 Soil  1992 Antifungal activity [194] 
Trehalamine Oxazoles Micromonospora sp. SANK 62390 Soil, Nikko, Tochigi, 

Japan 
1993 Inhibit rat intestinal 

sucrase 
[145] 

Quinolidomicins Macrolides Micromonospora sp. JY16 - FERM BP-
3940 

Soil,  Gunma, Japan 1993 Antitumoral activity [124] 

AC6H Aminoglycoside M. carbonaceae subsp. carbonaceae K55-
AC6 

Soil, Hyogo, Japan 1993 Antitumor activity [77] 

MS-444 Naphthols Micromonospora sp. KY7123 Soil, Okinawa, 
Japan 

1993 Vasodilator/ 
Bronchodilator 
Antitumoral activity 
Anti-HIV 

[280, 
350, 
351] 

Cororubicin Anthracycline Micromonospora sp. JY16 Soil, Gunma, Japan 1994 Cytotoxic activity [195] 
Macquarimicins Oxabicyclo[6.2.2] 

Systems 
M. chalcea AB 965S-73 
M. chalcea AB 969J-62 

Soil, Sydney, Australia 
Soil, Virginia, USA 

1995 Antitumoral activity [205] 



Korkormicins Peptidic 
compounds 

Micromonospora sp. C39500 Soil 1995 Antitumoral activity [159] 

Rakicidin A Cyclic depsipeptide Micromonospora sp. R385-2 Soil, Andhra Pradesh, 
India 

1995 Cytotoxic : Hypoxia-
Selective Cytotoxin 

[163] 

Antascomicins Macrocyclic 
lactones 

Micromonospora sp. DSM 8429 Soil, China 1996 Antagonize the 
immunosuppressive 
activity of FK506 and 
rapamycin (FKBP12 
binding molecules) 

[283] 

BU-4664L Dibenzazepines Micromonospora sp. ATCC 55378 Soil, Colombo, Sri Lanka 1996 Anti-inflammatory  
anti-tumor cell 
activities 

[207] 

Pyrrolosporin A Macrolides Micromonospora sp. ATCC 53791 Soil, Puerto Viejo, Peru 1996 Antibacterial activity 
Antitumor antibiotic 

[126] 

9-Hydroxycrisamicin-A Naphthoquinone Micromonospora sp. SA246 Soil, Taejon, Korea 1997 Cytotoxic antibiotic, 
Activate hepatitis B 
virus (HBV) replication

[182, 
183] 

Thiocoraline Thiodepsipeptide Micromonospora sp. ACM2-092  
Micromonospora sp. ML1 

Soft coral and mollusc,
Mozambique 

1997 Antibacterial activity 
Anticancer  activity 

[169] 

YM-47515 Isonitrile compound M. echinospora subsp. echinospora Y-
03559J 

Soil, Saitama, Japan 1997 Antibacterial activity [210] 

Cymbimicin A and B Lactone Micromonospora sp. DSM 8594 Soil, Bromo, Indonesia 1997 Cyclophilin-binding 
structures 
immuno-suppressive 

[129] 

Sch 40832 Thiostrepton M. carbonacea var. africana ATCC 39149 Soil, Kenya 1998 Antibacterial activity [150] 
Streptimidone  
Ao58A 

Glutarimide M. coerulea Ao58 Sea-mud soil, Young-
Jong island, Korea 

1999 Antifungal activity [211] 

Bravomicins Bravomicins M. polytrota Soil 1999 Antibacterial activity [212] 
IB-96212 Macrolide Micromonospora sp. CECT 3333 Homogenates of a 

sponge, Indian Ocean. 
Coast of Mozambique 

2000 Cytotoxic activity [130] 

Arisostatins Tetrocarcin Micromonospora sp. TP-A0316 Seawater sample, 
Toyama Bay, Japan 

2000 Antibacterial activity 
Antitumor activity 

[133] 

4'-N-Methyl-
5'hydroxystaurosporine 
5'-hydroxystaurosporine 

Indolocarbazole 
alkaloids 

Micromonospora sp.L-31-CLCO-002 Sponge Clathrina 
Coriacea, Canary Islands 
archipielago 

2000 Cytotoxic activity [214] 



SB-219383 Furan Micromonospora sp. NCIMB 40684 Soil, South Africa 2000 Antibacterial activity [215] 
Lomaiviticins Dimeric 

diazobenzofluorene 
glycosides 

M. lomaivitiensis LL-37I366 Ascidian 
Polysyncratonlithostrotu
m 

2001 Antitumor antibiotics [217] 

Streptonigrin 
7-(1-methyl-2 
oxopropyl)streptonigrin 

Quinone Micromonospora sp. IM 2670 Soil, Botanic Garden, 
Singapore 

2002 Cytotoxic activity [191] 

Kosinostatin Quinocycline Micromonospora sp. TP-A0468 Seawater sample, 
Toyama. Japan. 

2002 Antibacterial activity 
Cytotoxic 

[192] 

R176502 Bafilolide 
metabolite 

Micromonospora sp. JS1035 
 

River bottom sediment, 
Cameroon 

2003 Antiproliferative [220] 

Micromonomycin Anthracycline Micromonospora sp. - 2004 Antibacterial activity 
Antifungal activity 

[196] 

Micromonosporin A Macrolide Micromonospora sp. Acidic peat swamp 
forest, Thailand 

2004  [135] 

Sch 725418 Diketopiperazine Micromonospora sp. - 2004 Antifungal activity [221] 
Echinosporamicin Aromatic 

polycyclic system 
and a piperazinone 
moiety 

M. echinospora subsp. echinospora LL-
P175 

Soil, tidepool near 
Ventura, California, 
USA 

2004 Antibacterial activity [222] 

Diazepinomicin Natural 
dibenzodiazepine 

Micromonospora sp. DPJ12 
 
Micromonospora sp. RV115 

Ascidian Didemnum 
proliferum, Japan 
Sponge Aplysina 
aerophoba, Croatia 

2004 Anticancer  activity 
Anti-inflammatory 
Antiparasitic activity 

[223, 
224] 

Retymicin Xanthone Micromonospora sp. Tü 6368 Soil, Romania 2005 Cytostatic effects [227] 
Galtamycin B Galtamycin Micromonospora sp. Tü 6368 Soil, Romania 2005 Cytostatic effects [227] 
Saquayamycin Z Saquayamycin Micromonospora sp. Tü 6368 Soil, Romania 2005 Cytostatic effects [227] 
Lupinacidins Anthraquinones M. lupine Lupac 08 Root nodules of Lupinus 

angustifolius, Spain 
2007 anti-invasive activity 

against murine colon 
26-L5 carcinoma 
cells 

[189] 

TLN-05220,  
TLN-05223 

Echinosporamicin-
type antibiotics 

M. echinospora subsp. challisensis NRRL 
12255 

USA 2009 Antibacterial activity 
Anticancer  activity 

[213] 

Maklamicin Spirotetronate-class 
polyketide 

Micromonospora sp. GMKU326 Root of a leguminous 
plant, Thailand 

2011 - [176] 



 

Anthracyclinones Anthracyclinones Micromonospora sp. Tunicate Eudistoma 
vannamei 

2012 - [197] 

Juvenimicin C,  
5-O-Alpha-L-
rhamnosyltylactone 

Macrolides Micromonospora sp. Marine sample 2013 - [92] 

Telomycin Macrocyclic 
peptide lactone 

M. schwarzwaldensis Soil, the Black Forest, 
Germany 

2013 Antibacterial activity [240] 

Levantilide C Macrolide Micromonospora sp. FIM07-0019 Hallow coastal waters, 
island of Chiloe, Chile 

2013 Anticancer  activity [136] 

MBJ-0003 Hydroxamate 
metabolite 

Micromonospora sp. 29867 Shellfish, Shizuoka, 
Japan 

2014 Cytotoxic activity [352] 

Neomacquarimicin Carbocylic 
polyketide 

Micromonospora sp. NPS2077 Marine sponge, Japan. 2014 - [273] 
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