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Stabilization and enhancement of traffic flow by the next-nearest-neighbor interaction

Takashi Nagatani
Division of Thermal Science, Department of Mechanical Engineering, Shizuoka University, Hamamatsu 432-8561, Japan

~Received 13 July 1999!

The car-following model of traffic is extended to take into account the car interaction before the next car
ahead~the next-nearest-neighbor interaction!. The traffic behavior of the extended car-following model is
investigated numerically and analytically. It is shown that the next-nearest-neighbor interaction stabilizes the
traffic flow. The jamming transition between the freely moving and jammed phases occurs at a higher density
than the threshold of the original car-following model. By increasing the maximal velocity, the traffic current
is enhanced without jam by the stabilization effect. The jamming transition is analyzed with the use of the
linear stability and nonlinear perturbation methods. The traffic jam is described by the kink solution of the
modified Korteweg–de Vries equation. The theoretical coexisting curve is in good agreement with the simu-
lation result.@S1063-651X~99!01512-3#

PACS number~s!: 05.70.Fh, 05.70.Jk, 89.40.1k
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I. INTRODUCTION

Recently, traffic problems have attracted considerable
tention @1–3#, due to the fact that traffic behavior is impo
tant in our lives. When car density increases, traffic ja
appear. Traffic jams have been studied by several tra
models: car-following models@4–9#, cellular automaton
models@10–15#, gas kinetic models@16–19#, and hydrody-
namic models@20–22#. The jamming transitions betwee
freely moving traffic and jammed traffic are very similar
the conventional phase transitions and critical phenome
the freely moving traffic and jammed traffic correspond
the gas and liquid phases, respectively@23,24#. Furthermore,
it has been shown that the metastability occurs near the t
sition point and induces the hysteresis phenomenon@25,26#.

In the car-following models, the car velocity at timet is
determined, through the optimal velocity function, by t
headway~the difference between the car position and
position of the next car ahead! at timet2t with delay timet.
The car interacts only with the next car ahead: the car aff
the other car through the so-called nearest-neighbor inte
tion. Since the traffic flow is unidirectional the car is affect
by the next car ahead and does not interact with the
behind. In the cellular automaton models, the car posit
and velocity are also determined by the headway. Simila
the car interacts with the other car through the near
neighbor interaction.

For public demand, it will be necessary to enhance
traffic current and prevent the traffic jam. In the intellige
transportation system~ITS!, several traffic control system
are considered by accepting the information of the other c
We are interested in the enhancement and stabilizatio
traffic flow with the help of more information about the oth
car positions. In particular, the information of the car po
tion before the next car ahead may have an important ef
on the traffic flow. By the help of the information of the c
position before the next car ahead, it may be possible
prevent the traffic jam and enhance the traffic current. T
car-following models taking into account the next but o
car ahead have been unknown until now. There is an o
question as to whether or not the next-nearest-neighbo
PRE 601063-651X/99/60~6!/6395~7!/$15.00
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teraction affects effectively the traffic flow. If one can stab
lize the traffic flow and enhance the traffic current, the traf
system taking into account the next-nearest-neighbor inte
tion will be advantageous to us.

In this paper, we present the extended version of the
following models to take into account the next-neare
neighbor interaction. We investigate the effect of the ne
nearest-neighbor interaction on the traffic current and
jamming transition by the use of the numerical and analyti
methods. We would like to address whether or not the ne
nearest-neighbor interaction enhances the traffic current
stabilizes the traffic flow. We calculate the fundamental d
gram ~the current-density relation! and the phase diagram
~the coexisting curve, the spinodal line, and the critical poi!
numerically. We apply the linear stability method and t
nonlinear analysis to the extended car-following model. W
find the kink density wave solution for the traffic jam b
deriving the modified KdV equation from the extende
model. We compare the analytical result with the simulat
result.

II. MODEL

We present the extended version of the car-followi
models. We extend the car-following model to take into a
count the next-nearest-neighbor interaction. Newell@4# and
Whitham @5# have analyzed the car-following model d
scribed by the following equation of motion of carj:

dxj~ t1t!

dt
5V„Dxj~ t !…, ~1!

where xj (t) is the position of carj at time t, Dxj (t)
5xj 11(t)2xj (t) is the headway of carj at time t, andt is
the delay time.

The idea is that a driver adjusts the car velocitydxj (t)/dt
according to the observed headwayDxj (t). The delay timet
allows for the time lag that it takes the car velocity to rea
the optimal velocityV„Dxj (t)… when the traffic flow is vary-
ing. By Taylor-expanding Eq.~1!, one obtains the differen
tial equation model@6#
6395 © 1999 The American Physical Society
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6396 PRE 60TAKASHI NAGATANI
d2xj~ t !

dt2
5aS V„Dxj~ t !…2

dxj~ t !

dt D , ~2!

wherea is the sensitivity of a driver@6# and is given by the
inverse of the delay time. Furthermore, by transforming
time derivative to the difference in Eq.~1!, one can obtain
the difference equation model@9#:

xj~ t12t!5xj~ t1t!1tV„Dxj~ t !…. ~3!

The difference equation model is more suitable for com
tation since the time and space variables are discrete. T
models exhibit similar traffic behavior: when the car dens
increases, the jamming transition occurs. In these models
motion of a car is determined by the position of the next
ahead. These models include only the nearest-neighbor i
action.

We extend the difference equation model described
Eq. ~3! to take into account the next-nearest-neighbor in
action. We assume that a driver can obtain the informatio
the car position before the next car ahead: the driver of cj
can know the positions of carsj 11 andj 12. If the headway
Dxj 11 of the next carj 11 ahead is larger thanDxj of car j,
a driver of carj may wish to proceed with larger velocit
than the optimal velocityV(Dxj ). When the headwayDxj 11
of the next carj 11 ahead is less thanDxj of car j, a driver
of car j may wish to proceed with less velocity than th
optimal velocity V(Dxj ) determined byDxj . We assume
that when the headway of the next carj 11 ahead is larger
than that of the carj, car j moves with the larger desire
velocity V„Dxj (t)…1g$V„Dxj 11(t)…2V„Dxj (t)…%. Here pa-
rameter g represents the strength of the next-neare
neighbor interaction and 0<g<1. Then the extended car
following model is described by the following equation
motion of carj:

xj~ t12t!5xj~ t1t!1t@V„Dxj~ t !…

1g$V„Dxj 11~ t !…2V„Dxj~ t !…%#, ~4!

where Dxj 11(t)5xj 12(t)2xj 11(t) is the headway of the
next car j 11 ahead at timet. xj 12 denotes the position o
the next carj 12 but one car ahead. Wheng50, Eq. ~4! of
the extended car-following model reduces to Eq.~3! of the
car-following model. It is convenient to rewrite Eq.~4! in
terms of the headway. One obtains the following equatio

Dxj~ t12t!2Dxj~ t1t!2t@V„Dxj 11~ t !…2V„Dxj~ t !…#

2tg@V„Dxj 12~ t !…22V„Dxj 11~ t !…1V„Dxj~ t !…#50.

~5!

The last term on the left side of Eq.~5! represents the addi
tional term of the next-nearest-neighbor interaction.

Generally, it is necessary that the optimal velocity fun
tion has the following properties: It is a monotonically i
creasing function and it has an upper bound~maximal veloc-
ity!. We choose the same optimal velocity function as t
used by Bandoet al. @6#,

V~Dxj !5
nmax

2
$tanh~Dxj2hc!1tanh~hc!%, ~6!
e

-
se

he
r
er-

y
r-
of
r

t-

:

-

t

wherehc is the safety distance.
WhenDxj→`, the optimal velocity reaches the maxim

velocity V(`)5nmax/2$11tanh(hc)%. Furthermore, whenhc
@0, V(`)>nmax: the maximal value of the optimal velocit
is nmax for Dxj@hc@0. Equation~6! has a turning point
~inflection point! at Dxj5hc : V9(hc)5d2V(Dxj )/
dDxj

2uDxj 5hc
50. It is important that the optimal velocity

function has the turning point. Otherwise, one cannot h
the kink-antikink density wave solution representing the tr
fic jam.

III. LINEAR STABILITY ANALYSIS

We apply the linear stability method to the extend
model described by Eq.~4!. We consider the stability of the
uniform traffic flow. The uniform traffic flow is defined by
such a state that all cars move with constant headwayh and
optimal velocityV(h). The solution of the uniformly steady
state in Eq.~4! is given by

xj ,0~ t !5h j1V~h!t with h5L/N, ~7!

whereN is the number of cars,L is the system size, andh is
the car spacing~identical headway!.

Let yj (t) be small deviations from the uniform solutio
xj ,0(t): xj (t)5xj ,0(t)1yj (t). Then the linear equation is
obtained from Eq.~5!,

Dyj~ t12t!2Dyj~ t1t!2tV8~h!@Dyj 11~ t !2Dyj~ t !#

2tgV8~h!@Dyj 12~ t !22Dyj 11~ t !1Dyj~ t !#50,

~8!

whereV8(h) is the derivative of optimal velocityV(Dx) at
Dx5h andDyj (t)5yj 11(t)2yj (t).
By expandingDyj (t)5Y exp(ikj1zt), one obtains

e2zt2ezt2tV8~h!~eik21!2tgV8~h!~e2ik22eik11!50.
~9!

By solving Eq.~9! with z, one finds that the leading term o
z is order of ik. When ik→`, z→0. Let us derive the long
wave expansion ofz, which is determined order by orde
around ik'0. By expandingz5z1( ik)1z2( ik)21¯ , the
first- and second-order terms ofik are obtained,

z15V8~h! and z252 3
2 tV8~h!21

~112g!

2
V8~h!.

~10!

If z2 is a negative value, the uniformly steady-state flo
becomes unstable for long-wavelength modes. Whenz2 is a
positive value, the uniform flow is stable. The neutral stab
ity condition is given as

t5
~112g!

3V8~h!
. ~11!

For small disturbances of long wavelengths, the uniform
traffic flow is unstable if

t.
~112g!

3V8~h!
. ~12!
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The derivativeV8(h) of the optimal velocity has the maxi
mal value nmax/2 at turning pointh5hc . Therefore, if t
,tc@tc5(112g)/3nmax#, the uniform flow is always stable
irrespective of car density~headway!. We find that there is a
critical point at h(5Dx)5hc and t5tc . When g50, the
critical point and the neutral stability line agree with those
the original car-following model@7,23#. Figure 1 shows the
neutral stability lines in the space (Dx,a) for ~a! nmax52.0
and ~b! nmax53.0, whereDx is the headway anda is the
sensitivity. The solid curves indicate the neutral stabil
lines for various values ofg. The neutral stability lines de
crease with increasingg. With the increase of the strength o
the next-nearest-neighbor interaction, the traffic flow is m
stable than that without the next-nearest-neighbor inte
tion. The apex of each curve indicates the critical point. T
traffic flow above each curve is stable and the traffic j
does not appear. Below each curve, the traffic flow is
stable and the density waves appear. Figure 2 shows
critical line for nmax52.0. The critical line is obtained by
plotting the critical point againstg. The solid line indicates
the critical line. The circular points indicate the simulatio
result obtained in Sec. IV. The critical points decrease w
increasing g. This means that by introducing the nex
nearest-neighbor interaction into the original car-followi
model, the traffic flow becomes more stable than that with

FIG. 1. Neutral stability lines in the headwayDx-sensitivity a
space where the safety distancehc is 4.0. The solid lines indicate
the neutral stability lines for various values ofg, whereg is the
strength of the next-nearest-neighbor interaction.~a!
nmax52.0. ~b! nmax53.0.
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the next-nearest-neighbor interaction. The traffic current
creases withnmax but the traffic flow is unstable more tha
that of smallnmax. Therefore, the simultaneous increase
the next-nearest-neighbor interaction withnmax is able to en-
hance the traffic current without traffic jams.

IV. SIMULATION

We carry out a computer simulation for the extended tr
fic flow model described by Eq.~5!. The boundary is peri-
odic. First, we study the space-time evolution of the headw
for various values of next-nearest-neighbor interactiong. As
a result, three types of traffic flow are distinguished simila
to the original optimal velocity model: ~i! a freely moving
phase,~ii ! a coexisting phase in which jams appear, and~iii !
a uniformly congested phase. We focus our attention on
coexisting phase. Figure 3 shows the steady-state pattern
the coexisting phase obtained aftert510 000. For these pat
terns, the initial conditions are chosen as follows:Dxj (0)
5Dx054.0 for j Þ50,51, Dxj (0)5Dx054.020.1 for j
550, and Dxj (0)5Dx054.010.1 for j 551, where the
number of cars isN5100 andhc54.0. The patterns~a!, ~b!,
and~c! exhibit the time evolutions of the headway profile f
g50.0,0.1,0.2, wherenmax52.0 and a(51/t)52.0. The
traffic jams propagate backward as the kink-antikink dens
wave. The pattern~a! with g50.0 corresponds to that with
out the next-nearest-neighbor interaction. With increasingg,
the strength of the density waves is weakened by the n
nearest-neighbor interaction. Figure 4 shows the head
profiles in the steady state~obtained att520 000) for vari-
ous values ofg andnmax52.0. When the value ofg is larger
than the critical value, the density waves do not appear
the traffic flow is uniform over space@see Fig. 4~c!#. In any
case, considering long-time evolution only two distinct hea
ways survive for the coexisting phase: one is the headw
within the jam and the other is the headway out of the j
corresponding to that in the freely moving phase. The
headways depend on the delay timet ~the inverse of the
sensitivitya! and the strengthg of the next-nearest-neighbo
interaction. They are the headways of the jamming transit
points. By plotting the headways within and out of the de
sity wave, one obtains the coexisting curve in the ph
space (Dx,a). Figure 5 shows the phase diagrams in t
space (Dx,a) for ~a! nmax52.0 and~b! nmax53.0. In each

FIG. 2. Plot of the critical point againstg for nmax52.0. The
solid curve indicates the theoretical result obtained by the lin
stability analysis. The circular points indicate the simulation res
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6398 PRE 60TAKASHI NAGATANI
phase diagram, the solid line forg50.0 represents the coex
isting curve in the original optimal velocity model withou
the next-nearest-neighbor interaction. The dotted line in
cates the neutral stability line obtained by Sec. III. The n
tral stability line corresponds to the spinodal line in the fir
order phase transition. The simulation data forg50.1 and
0.2 are plotted by the circular points. The solid lines forg
50.1 and 0.2 represent the theoretical curves obtained f
the solution of the modified KdV equation. The theoretic
result agrees with the simulation result. The coexisting cu
decreases with increasingg. This means that the jammin
transition occurs at a smaller headway~a higher density! than
that without the next-nearest-neighbor interaction. Above
apex of each curve, the jamming transition does not oc
Each apex corresponds to the critical point. The simulat
result of the critical point is plotted by the circular points
Fig. 2. Thus, by introducing the next-nearest-neighbor in
action into the original car-following model, the jammin
transition does not occur until the car density reaches hig
density than that without the next-nearest-neighbor inte
tion. Therefore, the next-nearest-neighbor interaction st
lizes the traffic flow. The stabilization effect is strengthen
with the increase of the next-nearest-neighbor interaction

We calculate the traffic current. We study the effect of t
next-nearest-neighbor interaction on the traffic current. F
ure 6 shows the plots of the traffic currentq against densityr
for the cases ofnmax53.2 and g50.0, nmax53.2 and g
50.2, nmax51.8 and g50.0, and nmax51.8 and g50.2,

FIG. 3. Steady-state patterns for the coexisting phase obta
after t510 000. The patterns~a!, ~b!, and~c! show the time evolu-
tions of the headway profile forg50.0,0.1,0.2, wherenmax52.0
anda52.0.
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wherea52.0 andhc54.0. There is a gap in the traffic cur
rent. The traffic current increases with density in the lo
density region, reaches the maximal value, decreases dis
tinuously at the gap, and then decreases continuously
increasing density. The gap corresponds to the jamming t
sition point. With increasing the maximal velocity, the traffi
current increases. With increasing the strengthg of the next-
nearest-neighbor interaction, the jamming transition occ
at a higher density than that ofg50.0. For the case o
nmax51.8 and g50.2, no jamming transition occurs an
there is no gap in the current-density relation. The traffic j
is prevented by the next-nearest-neighbor interaction. Eve
the maximal velocity increases, it is possible to prevent
jamming transition. We find that it is necessary to increa
the maximal velocity and the strength of the next-neare
neighbor interaction simultaneously in order to enhance
traffic current without an occurring traffic jam. Thus, th
next-nearest-neighbor interaction has an important effec
the traffic flow. Taking into account the next-neare
neighbor interaction will be useful to improve the transpo
tation system.

V. NONLINEAR ANALYSIS

We analyze the extended car-following model by the u
of the nonlinear analysis method. We derive the modifi

ed

FIG. 4. Headway profiles~a!, ~b!, and~c! in the steady state for
g50.0,0.2,0.3, wherenmax52.0 anda52.0. For~a! g50.0 and~b!
g50.2, the kink-antikink density wave appears. For~c! g50.3, the
kink density wave disappears.
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FIG. 5. Phase diagrams in the headwayDx-sensitivity a space
for ~a! nmax52.0 and~b! nmax53.0. In each phase diagram, the so
lines represent the coexisting curves forg50.0,0.1,0.2. The dotted
line indicates the neutral stability curve~spinodal line! for g50.0.
The circular points indicate the simulation result.

FIG. 6. Plots of the traffic currentq against densityr for the
cases ofvmax53.2 andg50.0,nmax53.2 andg50.2,nmax51.8 and
g50.0, andnmax51.8 andg50.2, wherea52.0 andhc54.0. The
gap in each curve corresponds to the jamming transition point.
KdV equation describing the kink density wave. We find t
solution of the modified KdV equation for the kink jam. W
calculate the coexisting curve for the jamming transiti
from the solution. We compare the analytical result with t
simulation result.

We now consider long-wavelength modes in the traf
flow on coarse-grained scales. The simplest way to desc
the long-wavelength modes is the long-wave expansion.
consider the slowly varying behavior at long waveleng
near the critical point (hc ,ac). We extract slow scales fo
space variablej and time variablet @7,8,23,24,27#. For 0
,«!1, we therefore define slow variablesX andT,

X5«~ j 1bt! and T5«3t, ~13!

whereb is a constant determined later. We set the headw
as

Dxj~ t !5hc1«R~X,T!. ~14!

By expanding Eq.~5! to the fifth order of« with the use of
Eqs.~13! and ~14!, one obtains the following nonlinear pa
tial differential equation:

«2~b2V8!]XR1«3S 3b2t

2
2

~112g!

2
V8D ]X

2R

1«4F]TR1S 7b3t2

6
2

V8

6
2gV8D ]X

3R2
V-
6

]XR3G
1«5F3bt]X]TR1S 5b4t3

8
2

V8

24
2

7gV8

12 D ]X
4R

2S V-
12

1
gV8

6 D ]X
2R3G50, ~15!

where V85dV(Dx)/dDxuDx5hc
and V-

5d3V(Dx)/dDx3uDx5hc
. Here we used the expansion

shown in the Appendix.
By takingb5V8, the second-order term of« is eliminated

from Eq. ~15!. We consider the neighborhood of the critic
point tc :

t

tc
511«2, ~16!

where tc5(112g)/3V852(112g)/3nmax. Equation ~16!
is rewritten as

«4S ]TR2
~1113g214g2!

27
V8]X

3R2
V-
6

]XR3D
1«5S ~112g!

2
V8]X

2R1
~116g139g2246g3!

54

3V8]X
4R1

~112g!

12
V-]X

2R3D50. ~17!

In order to derive the regularized equation, we make
following transformation for Eq.~17!:
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T85
~1113g214g2!V8

27
T

and

R5S 2
2~1113g214g2!V8

9V- D 1/2

R8, ~18!

where

1113g214g2<0 for 0<g<1. ~19!

One obtains the regularized equation

]T8R85]X
3R82]XR832«„27

2 C1]X
2R8

1 1
2 C2]X

4R82 1
2 C3]X

2R83
…, ~20!

where

C15
~112g!

~1113g214g2!
,

C25
~116g139g2246g3!

~1113g214g2!
, C35112g.

If we ignore theO(«) terms in Eq.~20!, this is just the
modified KdV equation with a kink solution as the desir
solution,

R08~X,T8!5Ac tanhAc/2~X2cT8!. ~21!

The selected value of propagation velocityc for the kink
solution is determined from theO(«) term.

Next, assuming thatR8(X,T8)5R08(X,T8)1«R18(X,T8),
we take into account theO(«) correction. In order to deter
mine the selected value of the propagation velocityc for the
kink solution ~21!, it is necessary to satisfy the solvabilit
condition

~R08 ,M @R08# ![E
2`

`

dX R08~X,T8!M @R08~X,T8!#50,

~22!

where

M @R08#5 27
2 C1]X

2R081 1
2 C2]X

4R082 1
2 C3]X

2R08
3.

By performing the integration, one obtains the selected
locity

c5
135C1

2C213C3
. ~23!

One finds the solution of the modified KdV equation~17!,

R~X,T!5S 2
2~1113g214g2!V8c

9V- D 1/2

3tanhAc/2S X2
~1113g214g2!V8c

27
TD .

~24!
-

If we adopt the explicit form~6! of the optimal velocity
(V85nmax/2,V-52nmax), the amplitudeA of the kink solu-
tion is given by

A5F ~1113g214g2!c

9 S ac

a
21D G1/2

with

ac5tc
215

3nmax

2~112g!
. ~25!

The kink solution represents the coexisting phase, wh
consists of the freely moving phase with low density and
jammed~or congested! phase with high density. The head
ways~the inverse of the density! of the freely moving phase
and the jammed phase are given, respectively, byDx5hc
1A and Dx5hc2A. Thus, we obtain the coexisting curv
in the (Dx,a) plane whereDx is the headway anda is the
sensitivity ~the inverse of delay timet!. Figure 5 shows the
coexisting curves together with the simulation result for~a!
nmax52.0 and~b! nmax53.0. The solid lines indicate the co
existing curves forg50.0, 0.1, and 0.2. The case ofg
50.0 represents the coexisting curve without the ne
nearest-neighbor interaction. The circular points indicate
simulation result. The theoretical result is in good agreem
with the simulation result. It is shown that the solution of t
modified KdV equation gives the coexisting curve in t
jamming transition. With increasingg, the coexisting curve
and the critical point decrease. The next-nearest-neighbo
teraction stabilizes the traffic flow. The occurrence of a tr
fic jam is reduced to the low value of the sensitivity. Ther
fore, the next-nearest-neighbor interaction has an impor
effect on the stability of the traffic flow.

VI. SUMMARY

We have presented the extended car-following mode
take into account the next-nearest-neighbor interaction.
have investigated the effect of the next-nearest-neighbor
teraction on the traffic flow by the use of numerical a
analytical methods. We have shown that the next-near
neighbor interaction stabilizes the traffic flow. We ha
found that the jamming transition occurs at a higher den
than that without the next-nearest-neighbor interaction.
have analyzed the extended model by the use of linear
bility and nonlinear methods. We have shown that the tra
jam in the traffic flow with the next-nearest-neighbor inte
action is described by the modified KdV equation. The a
lytical result of the coexisting curve is in good agreeme
with that obtained by the simulation. We have shown tha
is possible to enhance the traffic current without jam by
creasing the maximal velocity and the strength of the ne
nearest-neighbor interaction.

To our knowledge, this paper is the first work showin
that the next-nearest-neighbor interaction has an impor
effect on the traffic behavior. It will be expected that the he
of the information of the car position before the next c
ahead results in the enhancement of traffic current and
prevention of the traffic jam.
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In this appendix, we present the expansions of each t
in Eq. ~5! to fifth order of«,

Dxj~ t1t!5hc1«R1«2bt]XR1«3
~bt!2

2
]X

2R

1«4
~bt!3

6
]X

3R1«4t]TR1«5
~bt!4

24
]X

4R

1«5bt2]T]XR, ~A1!

Dxj~ t12t!5hc1«R1«22bt]XR1«3
~2bt!2

2
]X

2R

1«4
~2bt!3

6
]X

3R1«42t]TR1«5
~2bt!4

24
]X

4R

1«54bt2]T]XR, ~A2!
g

ug

A

ez

. E
m
Dxj 11~ t !5hc1«R1«2]XR1

«3

2
]X

2R1
«4

6
]X

3R1
«5

24
]X

4R,

~A3!

Dxj 12~ t !5hc1«R1«22]XR1
«34

2
]X

2R1
«48

6
]X

3R

1
«516

24
]X

4R. ~A4!

We expand the optimal velocity function at the turning poi

V~Dxj !5V~hc!1V8~hc!~Dxj2hc!1
V-~hc!

6
~Dxj2hc!

3.

~A5!

By inserting Eqs.~A1!–~A5! into Eq. ~5!, one obtains Eq.
~15!.
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