PHYSICAL REVIEW E VOLUME 61, NUMBER 4 APRIL 2000

Density waves in traffic flow
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Density waves are investigated in the car-following model analytically and numerically. This work is a
continuation of our previous investigation of traffic flow in the metastable and unstable r¢Bioys Rev. E
58, 4271(1998; 60, 180(1999]. The Burgers equation is derived for the density wave in the stable region of
traffic flow by the use of nonlinear analysis. It is shown, numerically, that the triangular shock wave appears
as the density wave at the late stage in the stable region. The decay rate of the shock wave is calculated and
compared with the analytical result. It is shown that the density waves out of the coexisting curve, near the
spinodal line, and within the spinodal line appear, respectively, as the triangular shock wave, the soliton, and
the kink-antikink wave. The density waves are described, respectively, by the Burgers, Korteweg—de Vries,
and modified Korteweg—de Vries equations.

PACS numbd(s): 05.90+m, 47.35:+i, 89.40+k

[. INTRODUCTION wave appears as the density wave.
In this paper, we investigate the density wave appearing

Recently, traffic problems have attracted considerable atn the freely moving phase of the car-following models. We
tention[1—3]. When car density is high in a highway, traffic analyze the optimal velocity model by use of the nonlinear
jams occur and propagate as density waves?]. The typi-  analysis method. We derive the Burgers equation to describe
cal density wave has the kink-antikink form. It has beenthe density wave in the stable region. We show that there is
shown that the kink density wave is described by the modi2 triangular shock wave described by the Burgers equation in
fied Korteweg—de VriesKdV) equation[8—11]. Also, the the freely moving phase. We compare the numerical result
jamming transition between the free]y moving traffic and with the analytical result. Fina”y, we find that the three types
jammed traffic has been described as a type of nonequili?f nonlinear waves appear in the distinct three regions of
rium phase transitiofil2—19. Thus, the traffic flow has the traffic flow, and they are described by the Burgers, KdV, and
two aspects of wave propagation and phase transition. Alsgnodified KdV equations.
two-dimensional traffic models have been proposed for city
traffic [20—23. 1. MODELS AND BURGERS EQUATION

In modern traffic theory, it is well known that traffic jams We present the car-following models with the optimal ve-
occur in the high density region and propagate as kinks P 9 P

. . o locity function [5,10,13. Newell [24] and Whitham[25]
antikink density waveg5,8—10. In the past, traffic jams . . .
have been treated as the soliton density w25 or tri- have analyzed the traffic model described by the following

angular shock wave$26]. The nonlinear waves depend equation of motion of cay.
strongly on the traffic modelf26]. Until now, it has been dx:(t+7)
unclear as to whether or not the triangular shock wave occurs JT
in modern traffic models. The car-following models with op-

timal velocity function are favorable among microscopicynere xi(t) is the position of carj at timet, Ax;(t)
traffic models and have been studied in great detail by use c[f= xjﬂ(l[)—xj(t)] is the headway of cgrat timet' and]q- is

the numerical and analytical methoif8,9,13. the delay time. The idea is that a driver adjusts the car ve-

Generally, traffic flow is divided into the three regions: locity dx;(t)/dt according to the observed headway (t).
the stable traffic region out of the coexisting curve, the meta|y,q dela{y timer allows for the time lag that it takes ]the car

stability region between the coexisting and neutral stabilityg|q ity to reach the optimal velocity(Ax:(t)) when the
lines, and the unstable region within the coexisting curve !

. , ; traffic flow is varying.
Very recently, it has been shown that the kink density wave By Taylor-expanding Eq(1), one obtains the differential
appears as the traffic jam in the unstable region and the SOIja'quation modef5]:

ton density wave occurs only near the neutral stability line in

the car-following mode[27]. However, the density waves in dzxj(t) dx;(t)

the stable regiorfor in the freely moving phagéhave been - VAX() - —— | 2
little investigated in the car-following models. It is unknown

how the density wave .decays Wh?n_ a local density chang@herea is the sensitivity of a drivef5] anda=1/r.
occurs. The local density change is induced when a car de- Fyrthermore, by transforming time derivatives to asym-

celerates to a low velocity or stops instantly. How does thenetric forward differences in Eql), one can obtain the
local density variation relax to the uniform flow in the freely difference equation mod¢L0]:

moving phase? In the relaxation process, where does the den-
sity wave appear? It is expected that the triangular shock Xj(t+27)=x;(t+ 7) + 7V(AX;(1)). 3

=V(Ax;(1)), ()
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h =50 for the density wave in the stable traffic flow region. The
— - traffic flow is stable if the following condition is satisfied:
3.0 (\/crltlcal point
coexisting k 1
curve stable V’(Ax0)<z for models A and B, (5)
251 koA 1
a / spinodal *, V’(Axo)<§_ for model C, (6)

line :
-
metastable

2.0 where Ax, is the average headway an®¥’(Axg)

(=dV/dAx|AX:AXO) is the derivative of the optimal velocity

; unstable . function atAx=AX,.
15 L 1 b For later convenience, we rewrite E4$)—(3) as follows:
4.0 5.0 6.0
Ax, dx(t+7)
_ _ _ —ar - V@x(1) = VAXD), (7
FIG. 1. Phase diagram of the difference equation model. There
are the coexisting curve, the spinodal line, and the critical point 2
similar to the conventional gas-liquid phase transition. Three re- d ij(t)

dAX;
iy A . — (1) —
gions in the traffic flow are distinguished: the stable region above dt® a1 V(ax;.41(D))=V(ax;(1) dt |’ ®

the coexisting curve, the metastable region between the spinodal

and coexisting curve, and the unstable region below the spinodal Ax;(t+27)=Ax;(t+7)+ 7{V(AXj,1(1))—V(AX;(1))}.
line.

Following asymmetric difference approximations are used to We now consider long-wave modes in the stable traffic

derive Eq. (3) from Eg. (2): TZdZXj(t)/dtZZXj(t‘f'ZT) flow on coarse-gralneq scales. The simplest way to describe

—2x(t+7)+x(t) and rdx;(t)/dt=x,(t+7)—x(t). This the long-wave mode.s is the ang-wave expansion. Wg con-

asymmetry leads to the Burgers equations with different coSider the slowly varying behavior at long wavelengths in the

efficients. The difference equation model is more suitable foftable region. We extract slow scales for space varighiel

computation since the time and space variables are discreténe variablet [28]. For 0<e<1, we therefore define slow

It has been shown from simulation and analysis that the thre¥ariablesX andT:

models exhibit a similar traffic behavior and give similar o o

phase diagramf8,10,11. The phase diagram of the differ- X=&(j+bt) and T=e&7, (10

ence equation model is shown in Fig. 1. In all three models

the traffic flow is divided into three regions: the first is the

stable region above the coexisting curve, the second is the

metastable region between the spinodal line and the coexist- AX;(t)=Axo+eR(X,T). (11)

ing curve, and the third is the unstable region below the

spinodal line. In the unstable region, the traffic jam appear8y expanding Eqs(7)—(9) to the third order ofe with the

as the kink-antikink density wave. The kink jam has beenuse of Egs(10) and(11), one obtains the following nonlin-

presented by the solution of the modified KdV equation.ear partial differential equations:

Also, it has been shown that only near the neutral stability v’

line (the spinodal ling does the soliton density wave appear 2, s 3 g Y o) el

[27]. The soliton density wave has been described by the ® (b=V1)a,Rte7 6rR=VIRIR ( 2 b T) &XR}_O'

KdV equation. (12
Generally, it is necessary that the optimal velocity func-

tion has the following properties: it is a monotonically in-

creasing function and it has an upper boundximal veloc-

ity). The optimal velocity function has been given by

whereb is a constant determined later. We set the headway

e?(ab—aV')o,R+¢® >

aV’ 5| 2
adtR—aV'RR—| ———Db“| R

=0. (13
V(AX)) = —P(tank(Ax;—ho) +tantth)},  (4)
=2 1T b e?(b—V')70,R+ 23 79:R—V"7RI,R
whereh, is the safety distance ang,,y is the maximal ve- VT 3b%7
locity [5,12]. Equation(4) has the turning pointinflection I KR

point) at ijzhc:V”(hc)=[dZV(ij)/dijz]|ij:hc:o_. It
is important that the optimal velocity function has the turning =0, (14

point. Otherwise, one cannot have the kink-antikink density _ _ .
wave solution representing the traffic jam. where or=0/dT, dx=dldX, V _[dV(AX)/dAX]|A><:AXo’

We call the three models described by E@B, (2), and ~ andV”=[d*V(Ax)/dAx?]|sx-4x,- Here we used the expan-
(3) as modelsA, B, andC. We derive the Burgers equation sions shown in the Appendix.
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By takingb=V’, the second order term efis eliminated a =20,k =50,Ax, =50
from Egs.(12)—(14). One obtains the following partial dif-

ferential equations:
V/
9tR—V"Ro,R= ( -V 27) 2R, (15) ; 10150
Axf5 = ~,
VoV 3 o
tR—V"RIR=| —— —| %R, (16) . 10010
2 a 0 50 100
(a) j
V' 3V'?r o0 = _
&TR_V”RO']XR:(?_ 5 )&iR (17) a—2.0,ht—5,0,Axo—7.0

V" is negative forAx>h,. The coefficients {'/2—V'27),
(V'[2—V'?/a), and (V'/2—3V'27/2) of the second deriva-

. o ) ) : ; 10150
tives have positive values in the stable traffic region satisfy-
ing the stability conditiong5) and (6). Therefore, in the Ax,_| ~,
region of stable freely moving traffic flow, Eq§15)—(17) sk
are just the Burgers equation. Equati@tb) is consistent i 10010
with Eq. (15) since a=1/r. The solution of the Burgers (b) 0 ; 50 100
equation for the asymptotic stagel%1) is a train of
N-shock wave$29]. The solution is given by FIG. 2. Space-time evolution of the headway after a sufficiently
1 1 1 large time.(a) Pattern for the coexisting phasg) Pattern for the
_ - _ freely moving phase.
R(XaT)_W[X 2(77]+771+l) 2|Vlr|-|—

waves indeed appear in the stable region of the car-following
model except for the kink density wavé?) next the appli-
cability of the nonlinear analysis has to be proven.
The boundary is periodic. We study the space-time evo-
(18) lution of the headway for various values of sensitivatyAs
a result, three types of traffic flow are distinguishé€t) a
, I ) freely moving phase(2) a coexisting phase in which the
Whefezclzv 12=V'*7 for Egs. (15) and (16), C;=V'/2  ink-antikink density wave appears, a(8] a uniformly con-
—3V'?7/2 for Eq.(17). The coordinates of the shock fronts gested phase. Figure 2 shows the typical traffic patterns. The
are given by¢;(j=1,2,...N) and those of the intersections of pattern in Fig. 2a) exhibits the space-time evolution of the
the slopes with thec axis by 7;(j=1.2,...N). _ headway for the coexisting phase after a sufficiently large
Since the space variabl¢is given by Eq.(10), the trian-  time. The kink-antikink density wave appears as the traffic
gular shock wave propagates backward with the propagatiopym. The pattern in Fig. ®) exhibits the space-time evolu-
velocity b. The propagation velocity,, is given by tion of the headway for the freely moving phase after a suf-
, ficiently large time. The uniform traffic flow with low den-
vp=V'(AXo). (19) sity appears. Any initial disturbances decay and any initial
tgaﬁic flow with a nonuniform density profile evolves to the
uniformly traffic flow.
Until now, the coexisting phase has been investigated in
tail. Here, we focus our attention to the freely moving

X t C1
(7541~ mj)tan VT

X(mj+1— ) (X=§))

The shock wave propagates backwards only with respect
the moving vehicleqi.e., relative to the index), but the
shock propagates forward in the absolute system, if one is iH
the region of the free traffic. The propagation velocity de- €
creases with increasing the average headway. The propaga-

tion velocity does not depend on the sensitivity. In contrast, @ =20k, =50,4x, =70

the propagation velocity of the kink density does not depend —_— ;‘fgggg
on the average density but on the sensitiy&y27]. = -
_— 1\
-\
lll. SIMULATION ://\? O
We carry out simulation to compare the simulation result £=1200
with the analytical result. The investigated system is a dif- 9 t =800
ference equation modé3) since it is more suitable for com- Ax; t =400
putation. In the nonlinear analysis, we obtain the shock wave 0 : '0 : 200
solution as the density wave appearing in the stable traffic 50 j 10 150

flow region. Howevera priori it could not be assumed that

the car-following models would yield the triangular shock  FIG. 3. Time evolution of the headway profiles when the initial
waves. Therefore, simulation is carried out to validate twodensity profile has the kink-antikink form in the freely moving
points: (1) First it has to be shown that the triangular shockphase.
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75 a=20h =50,Ax, =70
a =20,k =50,Ax, =70,t =10000 30000
Ax, .
7.0 /\:/,4 s
20000
t
6.5 | | |

0 50 100 150 200 10000(
j N

FIG. 4. Headway profile of the triangular shock wave obtained
att=10000. Points andd indicate, respectively, the positions of 0
the shock front and the intersection of the slope.

phase. We consider the relaxation process of the nonuniform FIG. 6. Plot of the two intersectiorsandd (see Fig. 4 of the
flow to the uniform steady flow. We study how the initial triangular shock wave against until t=30000 wherea=2.0,
density profile with kink-antikink form evolves to the uni- AXo=7.0,h=5.0,N=200.

form traffic flow. The initial headway profile is chosen as

follows: (Axj—Ax;_1)ax,~t"" at pointd
Ax;(0)=Ax;(1)=Ax,—2.0 for 1<j<N/2, (the slope of the triangular payt (21
—Ax. ~t-2 -
Ax;(0)=Ax(1)=Axe+2.0 for NI2<j<N, (20) (AXj=AXj_1)ax,~t"" at pointe

whereAx, is the average headway. Figure 3 shows the time (the slope of the shock front (22)

evolution of the headway profiles &t 400, 800, 1200, ...,
3800, 4000 whera=2.0, AXq=7.0,h,=5.0, N=200. The 0 _ _ - =

initial kink-antikink headway profile decays through the tri- inztl(l)otm}reh; tv?/g Os?o(:i dwr;r?éiaarglghﬁv)\(/?\ n7e-2’r Tﬁe Ss.i(r)r;u’\llation
angular ShOCk. wave t.o the uniform flow. Flggre .4 S.hOWS thedata. They indicate, respectively, the straight lines with the
headway profile obtained &t 10 000. The point indicates slopes—1 and —2. We find that the slopes decays as Eqgs
the position of the intersection of the shock front with (21) and (22) with .the scaling exponents 1 and —2 ’

Afx,- (h10 QOO):AXPZ 7'?; 'I;]he plomtd mdml‘catelsotgoeopozltlon We study the propagation velocity of the triangular shock
of the intersection of the slope withx;( F=AXo  \yave. Figure 6 shows the plot of the two intersectiormd

=7.0 line. The headway profile obtained from simulationd Fi f the tri | hock ith tt
agrees with the triangular shock wave solut{@8). We find tingzete u;ﬁi.l ‘){i% e te: ;E,I(?g(g)g av:/r?e:a(z:a:;a(\)/ € Avgozgegpic 0
My Yy (o4

that the initial kink-antikink headway p_rof|le evolves to the —5.0,N=200. Except for an initial stage, the intersections
triangular shock wave at an asymptotic stage. Furthermoreng

Figure 5 shows the log-log plot of the slopes against ttime

; ropagate with the constant velocity. The propagation veloc-
we study the decay rate of the slopes of the triangular shoc pag Y propag

. ! . v, is given by the slope of the locus. The propagation
wave in order to prove the consistency with the headwa)(/elocpity depends highly on the average dengity average
profile (18). The triangular shock wave has the two intersec-headway Figure 7 shows the plot of the propagation veloc-
tions of the shock frqnt and the triangular part with ity v, ag.ainst the average headwAy, wherea=2.0, h,
gtx'gk(uje-oir?tct)a?s):eéi)é)on_s;Zgalllger.ezrp?enc:til\zlglg/lsgsthe two slopes =5.0. The circular points indicate the simulation result. The

' ' propagation velocity decreases with increasing the average

headway. The solid line represents the analytical result
a=20,h =50,Ax, =70 y P ytical resy

1 - 0.16 | a=20
5 h =50
I o:simulation
3 10" - 0.12 -
I 14
- » v, =V’(Ax,)
o 0
g/ 107 - 0.08 -
107 |- | | | ) 0.04
10 10° 10° 10* 10°
t 0 1 I I
. 6.5 7.0 X 8.5
FIG. 5. Log-log plot of the slopes of the triangular part and Ax, 75 8.0
shock front against timé wherea=2.0, Ax,=7.0, h,=5.0. The
two straight lines with slopes-1 and —2 are shown by the solid FIG. 7. Plot of the propagation velocity, against the average

lines near the simulation data. headwayAx, wherea=2.0, h.=5.0.
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a =20,k =50,Ax, =70 region just below the critical poiri8,12]. The small positive
scaling parametes(=/(a./a) —1)<1 is introduced. It rep-
resents the deviation from the critical pomt. One defines
the slow variables andT:

4
X=2¢(j+V’'t) and T=§83V’t, (24)

where V' is the derivative at the critical pointV’
=[dV(Ax)/dAX][ax=n . The headway is set as follows:

V/
ij(t)=hc+28\/WR(X,T). (25

where V" =[d*V(Ax)/dAX®]| sx-n - By inserting Eq.(25)
into Eq.(8) and expanding to the fifth order ef one obtains

oI T =80 the modified KdV equation with the perturbed term:
Ax; t=400
1 | | 3 2
(b) 0 50 i 100 150 200 84((9TR—(?3R+ (7><R3)+ ESS( (9>2(R+ ﬂjR— §(3;)2(R3) =0.
FIG. 8. Time evolution of the headway profiles for the initial (26)

random headway profile 48 t=40, 80, 120, ..., 380, 40Qp) t

=400, 800, 1200, ..., 3800, 4000 wheae=2.0, Ax,=7.0, h, Finally, one obtains the kink solution from E6):

=5.0,N=200.

. ) . . . ac

=V'(Axg). The simulation result is consistent with the ana- 5V’ (he) E_l

lytical result. The propagation velocity does not depend on Ax;(t)=h,* _

the sensitivity. IV (ho)|

We study the relaxation process of the random headway a

profile to the uniform steady flow. The initial random head- 5 =C_1

way profile is chosen as follows: Xtan a
2

Ax;(0)=Ax;(1)=7.0-10.QR;—0.5), (23

aC

whereR; is a real number between zero and unity generated _ 5(3_ 1)

by random number generator at darFigure 8 shows the XN\ s Vi(hot| |- (27)

time evolution of the headway profiles @ t=40, 80, 120,

..., 380, 400,(b) t=400, 800, 1200, ..., 3800, 4000 where - - R i,
a=2.0, Axo=7.0, h.=5.0, N=200. The initial irregular The modified KdV equation is derived just below the critical

headway profile decays through the triangular shock waveBCINnt: However, the kink density wave solutiéf?) agrees

to the uniform flow. Thus, we find that the nonuniform den- with the simulation result far from the critical poif8,12].

sity profile evolves through the triangular shock waves to the We. derive the' KdV equation from Eq2). The Kdv
uniform flow in the stable traffic flow region. equations are derived near the spinodal lifhe neutral sta-

bility line) [27]. The small positive scaling parameter
(=+]as/a—1|)<1 is introduced. It represents the deriva-
tion from the neutral stability lina =2V’ (Axp)]. One de-

For comparison, we shortly repeat the derivations of thfines the slow variableX andT:
modified KdV equation of the kink density wave and the
KdV equation of the soliton density waye,12,27. The X=¢g(j+V't) and T=¢gd, (28)
kink density wave appears below the coexisting curve. The
soliton density wave appears near the spinodal (&®e Fig.  \yhereV’ is the derivative on the neutral stability ling”

1). The kink density wave is robust. Even if any disturbances:[dV(AX)/dAX]|A _ .. The headway is set as follows:
are added to the kink density wave, the deformed density =%

wave returns to the kink density wave in the course of time. )

On the other hand, the soliton density wave is unstable even Axj()=Axo+&"R(X,T). (29

if perturbations are very small. All perturbations will either

develop to the kink density wave or dissolve in the course oBy inserting Eq.(29) into Eq.(8) and expanding to the sixth

time. order ofe, one obtains the KdV equation with the perturbed
The modified KdV equations are derived in the unstableterm:

IV. NONLINEAR WAVES
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!

V', spinodal line, the second is the soliton density wave appear-
9TR—§5XR—V"R5’XR ing near the spinodal line, and the third is the triangular
shock wave appearing in the stable region out of the coex-

c’a

av' , VA . o isting curve. These density waves are described, respectively,
— KRz 57 |ARH VIV by the modified KdV equation, the KdV equation, and the
Burgers equation.

+ g8

av’\ ,_, In past works, the traffic jam has been described by the
T4 9R°|=0. (30) Burgers equation in a particular hydrodynamic model. How-
ever, the triangular density wave found in this paper is to the
Finally, one obtains the soliton solution from E&Q): best of our knowledge, definitely different from any in past
) works since the triangular shock wave is one of the three
_ as types of density waves and the Burgers equation is derived
AXi(1)=AXo+ 5o [ —— . .
! 3V" |a from the microscopic model.
APPENDIX
X seck In this appendix, we present the expansions of each term
in Egs.(7)—(9) to third order ofe:
dAX;(t
a d—Jt() =g?bo,R+e301R, (A1)
X|j+\ 1+ ——— . (3D
. . . . . dZAXJ(t) 31,2 2
The KdV equation is derived just near the spinodal line. T b*a,R, (A2)
Thus, the kink and soliton density waves are observed,
respectively, below the coexisting curve and near the spin- dAX;(t+7)

odal line. On the other hand, the triangular shock wave is =£%ba,R+e%0?792R+e%9R,  (A3)

observed above the coexisting curve when the uniform traffic dt

flow is deformed by the disturbances. The three types of (br)?
density waves appear corresponding to the three distinct reAx;(t+ 7)=Ax,+ &R+ e?bro,R+¢e> (9)2(R+ e3791R,
gions of traffic flow. Here, the three types of density waves 2 (Ad)

have been found for the san@ptimal velocity model, with
just different parameters. 4(b7)2

Axj(t+ 7)=AXo+eR+e%2bro,R+ > 5 92R
V. SUMMARY
3

We have studied the relaxation process of nonuniform tet2rdR, (AS)
density profile in the stable traffic flow to the uniform den- &3
sity profile with the use of the car-following models. We AXj1(t)=Axo+eR+ g20,R+ ?aiR, (AB)
have shown, analytically and numerically, how the initially
nonuniform density profile evolves to the uniform density _ , _
profile in the stable traffic region. We have found that the V(A%) =V(AxXo) + V' (AXo) (AX; ~ AXo)
nonuniform density profile relaxes through the triangular V"(AXg) )
shock wave to the uniform density profile. It has been shown + (A= AX0)%, (A7)
that the triangular shock wave is described by the Burgers
equations. We have found that the analytical solution of the \V&
Burgers equation is consistent with the triangular shock V(AX;.1)—V(Ax))=&?V'9R+ 3| V'Ro,R+ 76’§R :
wave obtained by simulation. Finally, we have concluded (A8)

that the three types of density waves appear in the distinct
three regions of traffic flow: the first is the kink-antikink By inserting(A1)—(A8) into Egs.(7)—(9), one obtains Egs.
density wave appearing in the unstable region within thg12)—(14).
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