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Density waves in traffic flow

Takashi Nagatani
Division of Thermal Science, Department of Mechanical Engineering, Shizuoka University, Hamamatsu 432-8561, Japan

~Received 12 October 1999!

Density waves are investigated in the car-following model analytically and numerically. This work is a
continuation of our previous investigation of traffic flow in the metastable and unstable regions@Phys. Rev. E
58, 4271~1998!; 60, 180~1999!#. The Burgers equation is derived for the density wave in the stable region of
traffic flow by the use of nonlinear analysis. It is shown, numerically, that the triangular shock wave appears
as the density wave at the late stage in the stable region. The decay rate of the shock wave is calculated and
compared with the analytical result. It is shown that the density waves out of the coexisting curve, near the
spinodal line, and within the spinodal line appear, respectively, as the triangular shock wave, the soliton, and
the kink-antikink wave. The density waves are described, respectively, by the Burgers, Korteweg–de Vries,
and modified Korteweg–de Vries equations.

PACS number~s!: 05.90.1m, 47.35.1i, 89.40.1k
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I. INTRODUCTION

Recently, traffic problems have attracted considerable
tention@1–3#. When car density is high in a highway, traffi
jams occur and propagate as density waves@4–7#. The typi-
cal density wave has the kink-antikink form. It has be
shown that the kink density wave is described by the mo
fied Korteweg–de Vries~KdV! equation@8–11#. Also, the
jamming transition between the freely moving traffic a
jammed traffic has been described as a type of nonequ
rium phase transition@12–19#. Thus, the traffic flow has the
two aspects of wave propagation and phase transition. A
two-dimensional traffic models have been proposed for
traffic @20–23#.

In modern traffic theory, it is well known that traffic jam
occur in the high density region and propagate as ki
antikink density waves@5,8–10#. In the past, traffic jams
have been treated as the soliton density wave@24,25# or tri-
angular shock waves@26#. The nonlinear waves depen
strongly on the traffic models@26#. Until now, it has been
unclear as to whether or not the triangular shock wave oc
in modern traffic models. The car-following models with o
timal velocity function are favorable among microscop
traffic models and have been studied in great detail by us
the numerical and analytical methods@5,8,9,12#.

Generally, traffic flow is divided into the three region
the stable traffic region out of the coexisting curve, the me
stability region between the coexisting and neutral stabi
lines, and the unstable region within the coexisting cur
Very recently, it has been shown that the kink density wa
appears as the traffic jam in the unstable region and the
ton density wave occurs only near the neutral stability line
the car-following model@27#. However, the density waves i
the stable region~or in the freely moving phase! have been
little investigated in the car-following models. It is unknow
how the density wave decays when a local density cha
occurs. The local density change is induced when a car
celerates to a low velocity or stops instantly. How does
local density variation relax to the uniform flow in the free
moving phase? In the relaxation process, where does the
sity wave appear? It is expected that the triangular sh
PRE 611063-651X/2000/61~4!/3564~7!/$15.00
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wave appears as the density wave.
In this paper, we investigate the density wave appear

in the freely moving phase of the car-following models. W
analyze the optimal velocity model by use of the nonline
analysis method. We derive the Burgers equation to desc
the density wave in the stable region. We show that ther
a triangular shock wave described by the Burgers equatio
the freely moving phase. We compare the numerical re
with the analytical result. Finally, we find that the three typ
of nonlinear waves appear in the distinct three regions
traffic flow, and they are described by the Burgers, KdV, a
modified KdV equations.

II. MODELS AND BURGERS EQUATION

We present the car-following models with the optimal v
locity function @5,10,12#. Newell @24# and Whitham@25#
have analyzed the traffic model described by the follow
equation of motion of carj:

dxj~ t1t!

dt
5V„Dxj~ t !…, ~1!

where xj (t) is the position of carj at time t, Dxj (t)
@5xj 11(t)2xj (t)# is the headway of carj at timet, andt is
the delay time. The idea is that a driver adjusts the car
locity dxj (t)/dt according to the observed headwayDxj (t).
The delay timet allows for the time lag that it takes the ca
velocity to reach the optimal velocityV„Dxj (t)… when the
traffic flow is varying.

By Taylor-expanding Eq.~1!, one obtains the differentia
equation model@5#:

d2xj~ t !

dt2
5aFV„Dxj~ t !…2

dxj~ t !

dt G , ~2!

wherea is the sensitivity of a driver@5# anda51/t.
Furthermore, by transforming time derivatives to asy

metric forward differences in Eq.~1!, one can obtain the
difference equation model@10#:

xj~ t12t!5xj~ t1t!1tV„Dxj~ t !…. ~3!
3564 © 2000 The American Physical Society
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PRE 61 3565DENSITY WAVES IN TRAFFIC FLOW
Following asymmetric difference approximations are used
derive Eq. ~3! from Eq. ~2!: t2d2xj (t)/dt25xj (t12t)
22xj (t1t)1xj (t) and tdxj (t)/dt5xj (t1t)2xj (t). This
asymmetry leads to the Burgers equations with different
efficients. The difference equation model is more suitable
computation since the time and space variables are disc
It has been shown from simulation and analysis that the th
models exhibit a similar traffic behavior and give simil
phase diagrams@8,10,11#. The phase diagram of the differ
ence equation model is shown in Fig. 1. In all three mod
the traffic flow is divided into three regions: the first is th
stable region above the coexisting curve, the second is
metastable region between the spinodal line and the coe
ing curve, and the third is the unstable region below
spinodal line. In the unstable region, the traffic jam appe
as the kink-antikink density wave. The kink jam has be
presented by the solution of the modified KdV equatio
Also, it has been shown that only near the neutral stab
line ~the spinodal line!, does the soliton density wave appe
@27#. The soliton density wave has been described by
KdV equation.

Generally, it is necessary that the optimal velocity fun
tion has the following properties: it is a monotonically i
creasing function and it has an upper bound~maximal veloc-
ity!. The optimal velocity function has been given by

V~Dxj !5
nmax

2
$tanh~Dxj2hc!1tanh~hc!%, ~4!

wherehc is the safety distance andnmax is the maximal ve-
locity @5,12#. Equation~4! has the turning point~inflection
point! at Dxj5hc :V9(hc)5@d2V(Dxj )/dDxj

2#uDxj 5hc50.. It
is important that the optimal velocity function has the turni
point. Otherwise, one cannot have the kink-antikink dens
wave solution representing the traffic jam.

We call the three models described by Eqs.~1!, ~2!, and
~3! as modelsA, B, andC. We derive the Burgers equatio

FIG. 1. Phase diagram of the difference equation model. Th
are the coexisting curve, the spinodal line, and the critical po
similar to the conventional gas-liquid phase transition. Three
gions in the traffic flow are distinguished: the stable region ab
the coexisting curve, the metastable region between the spin
and coexisting curve, and the unstable region below the spin
line.
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for the density wave in the stable traffic flow region. Th
traffic flow is stable if the following condition is satisfied:

V8~Dx0!,
1

2t
for models A and B, ~5!

V8~Dx0!,
1

3t
for model C, ~6!

where Dx0 is the average headway andV8(Dx0)
(5dV/dDxuDx5Dx0

) is the derivative of the optimal velocity

function atDx5Dx0 .
For later convenience, we rewrite Eqs.~1!–~3! as follows:

dxj~ t1t!

dt
5V„Dxj 11~ t !…2V„Dxj~ t !…, ~7!

d2Dxj~ t !

dt2
5aH V„Dxj 11~ t !…2V„Dxj~ t !…2

dDxj

dt J , ~8!

Dxj~ t12t!5Dxj~ t1t!1t$V„Dxj 11~ t !…2V„Dxj~ t !…%.
~9!

We now consider long-wave modes in the stable tra
flow on coarse-grained scales. The simplest way to desc
the long-wave modes is the long-wave expansion. We c
sider the slowly varying behavior at long wavelengths in t
stable region. We extract slow scales for space variablej and
time variablet @28#. For 0,«!1, we therefore define slow
variablesX andT:

X5«~ j 1bt! and T5«2t, ~10!

whereb is a constant determined later. We set the headw
as

Dxj~ t !5Dx01«R~X,T!. ~11!

By expanding Eqs.~7!–~9! to the third order of« with the
use of Eqs.~10! and ~11!, one obtains the following nonlin-
ear partial differential equations:

«2~b2V8!]xR1«3F]TR2V9R]xR2S V8

2
2b2t D ]x

2RG50.

~12!

«2~ab2aV8!]xR1«3Fa]TR2aV9R]xR2S aV8

2
2b2D ]x

2RG
50. ~13!

«2~b2V8!t]xR1«3Ft]TR2V9tR]xR

2S V8t

2
2

3b2t2

2 D ]x
2RG

50, ~14!

where ]T5]/]T, ]x5]/]X, V85@dV(Dx)/dDx#uDx5Dx0
,

andV95@d2V(Dx)/dDx2#uDx5Dx0
. Here we used the expan

sions shown in the Appendix.
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3566 PRE 61TAKASHI NAGATANI
By takingb5V8, the second order term of« is eliminated
from Eqs.~12!–~14!. One obtains the following partial dif
ferential equations:

]TR2V9R]xR5S V8

2
2V82t D ]x

2R, ~15!

]TR2V9R]xR5S V8

2
2

V82

a D ]x
2R, ~16!

]TR2V9R]xR5S V8

2
2

3V82t

2 D ]x
2R. ~17!

V9 is negative forDx.hc . The coefficients (V8/22V82t),
(V8/22V82/a), and (V8/223V82t/2) of the second deriva
tives have positive values in the stable traffic region satis
ing the stability conditions~5! and ~6!. Therefore, in the
region of stable freely moving traffic flow, Eqs.~15!–~17!
are just the Burgers equation. Equation~16! is consistent
with Eq. ~15! since a51/t. The solution of the Burgers
equation for the asymptotic stage (T@1) is a train of
N-shock waves@29#. The solution is given by

R~X,T!5
1

uV9uT FX2
1

2
~h j1h j 11!G2

1

2uV9uT

3~h j 112h j !tanhF C1

4uV9uT

3~h j 112h j !~X2j j !G , ~18!

where C15V8/22V82t for Eqs. ~15! and ~16!, C15V8/2
23V82t/2 for Eq. ~17!. The coordinates of the shock fron
are given byj j ( j 51,2,...,N) and those of the intersections o
the slopes with thex axis byh j ( j 51,2,...,N).

Since the space variableX is given by Eq.~10!, the trian-
gular shock wave propagates backward with the propaga
velocity b. The propagation velocitynp is given by

np5V8~Dx0!. ~19!

The shock wave propagates backwards only with respec
the moving vehicles~i.e., relative to the indexj!, but the
shock propagates forward in the absolute system, if one
the region of the free traffic. The propagation velocity d
creases with increasing the average headway. The prop
tion velocity does not depend on the sensitivity. In contra
the propagation velocity of the kink density does not depe
on the average density but on the sensitivity@8,27#.

III. SIMULATION

We carry out simulation to compare the simulation res
with the analytical result. The investigated system is a d
ference equation model~3! since it is more suitable for com
putation. In the nonlinear analysis, we obtain the shock w
solution as the density wave appearing in the stable tra
flow region. However,a priori it could not be assumed tha
the car-following models would yield the triangular sho
waves. Therefore, simulation is carried out to validate t
points: ~1! First it has to be shown that the triangular sho
-
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waves indeed appear in the stable region of the car-follow
model except for the kink density wave;~2! next the appli-
cability of the nonlinear analysis has to be proven.

The boundary is periodic. We study the space-time e
lution of the headway for various values of sensitivitya. As
a result, three types of traffic flow are distinguished:~1! a
freely moving phase,~2! a coexisting phase in which th
kink-antikink density wave appears, and~3! a uniformly con-
gested phase. Figure 2 shows the typical traffic patterns.
pattern in Fig. 2~a! exhibits the space-time evolution of th
headway for the coexisting phase after a sufficiently la
time. The kink-antikink density wave appears as the tra
jam. The pattern in Fig. 2~b! exhibits the space-time evolu
tion of the headway for the freely moving phase after a s
ficiently large time. The uniform traffic flow with low den
sity appears. Any initial disturbances decay and any ini
traffic flow with a nonuniform density profile evolves to th
uniformly traffic flow.

Until now, the coexisting phase has been investigated
detail. Here, we focus our attention to the freely movi

FIG. 3. Time evolution of the headway profiles when the init
density profile has the kink-antikink form in the freely movin
phase.

FIG. 2. Space-time evolution of the headway after a sufficien
large time.~a! Pattern for the coexisting phase.~b! Pattern for the
freely moving phase.
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PRE 61 3567DENSITY WAVES IN TRAFFIC FLOW
phase. We consider the relaxation process of the nonunif
flow to the uniform steady flow. We study how the initi
density profile with kink-antikink form evolves to the un
form traffic flow. The initial headway profile is chosen a
follows:

Dxj~0!5Dxj~1!5Dx022.0 for 1< j <N/2,

Dxj~0!5Dxj~1!5Dx012.0 for N/2, j <N, ~20!

whereDx0 is the average headway. Figure 3 shows the ti
evolution of the headway profiles att5400, 800, 1200, ...,
3800, 4000 wherea52.0, Dx057.0, hc55.0, N5200. The
initial kink-antikink headway profile decays through the t
angular shock wave to the uniform flow. Figure 4 shows
headway profile obtained att510 000. The pointc indicates
the position of the intersection of the shock front wi
Dxj (10 000)5Dx057.0. The pointd indicates the position
of the intersection of the slope withDxj (10 000)5Dx0
57.0 line. The headway profile obtained from simulati
agrees with the triangular shock wave solution~18!. We find
that the initial kink-antikink headway profile evolves to th
triangular shock wave at an asymptotic stage. Furtherm
we study the decay rate of the slopes of the triangular sh
wave in order to prove the consistency with the headw
profile ~18!. The triangular shock wave has the two interse
tions of the shock front and the triangular part wi
Dxj (10 000)5Dx057.0 line. From Eq.~18!, the two slopes
at the intersections scale, respectively, as

FIG. 5. Log-log plot of the slopes of the triangular part a
shock front against timet wherea52.0, Dx057.0, hc55.0. The
two straight lines with slopes21 and22 are shown by the solid
lines near the simulation data.

FIG. 4. Headway profile of the triangular shock wave obtain
at t510 000. Pointsc andd indicate, respectively, the positions o
the shock front and the intersection of the slope.
m

e

e
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ck
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~Dxj2Dxj 21!Dx0
't21 at pointd

~the slope of the triangular part!, ~21!

~Dxj2Dxj 21!Dx0
't22 at pointc

~the slope of the shock front!. ~22!

Figure 5 shows the log-log plot of the slopes against timt
until time t530 000 wherea52.0, Dx057.0, hc55.0, N
5200. The two solid lines are shown near the simulat
data. They indicate, respectively, the straight lines with
slopes21 and22. We find that the slopes decays as E
~21! and ~22! with the scaling exponents21 and22.

We study the propagation velocity of the triangular sho
wave. Figure 6 shows the plot of the two intersectionsc and
d ~see Fig. 4! of the triangular shock wave with respect
time t until time t530 000 wherea52.0, Dx057.0, hc
55.0, N5200. Except for an initial stage, the intersectio
propagate with the constant velocity. The propagation vel
ity np is given by the slope of the locus. The propagati
velocity depends highly on the average density~or average
headway!. Figure 7 shows the plot of the propagation velo
ity np against the average headwayDx0 wherea52.0, hc
55.0. The circular points indicate the simulation result. T
propagation velocity decreases with increasing the aver
headway. The solid line represents the analytical resultnp

d

FIG. 6. Plot of the two intersectionsc andd ~see Fig. 4! of the
triangular shock wave againstt until t530 000 wherea52.0,
Dx057.0, hc55.0, N5200.

FIG. 7. Plot of the propagation velocitynp against the average
headwayDx0 wherea52.0, hc55.0.
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3568 PRE 61TAKASHI NAGATANI
5V8(Dx0). The simulation result is consistent with the an
lytical result. The propagation velocity does not depend
the sensitivity.

We study the relaxation process of the random head
profile to the uniform steady flow. The initial random hea
way profile is chosen as follows:

Dxj~0!5Dxj~1!57.0210.0~Rj20.5!, ~23!

whereRj is a real number between zero and unity genera
by random number generator at carj. Figure 8 shows the
time evolution of the headway profiles at~a! t540, 80, 120,
..., 380, 400,~b! t5400, 800, 1200, ..., 3800, 4000 whe
a52.0, Dx057.0, hc55.0, N5200. The initial irregular
headway profile decays through the triangular shock wa
to the uniform flow. Thus, we find that the nonuniform de
sity profile evolves through the triangular shock waves to
uniform flow in the stable traffic flow region.

IV. NONLINEAR WAVES

For comparison, we shortly repeat the derivations of
modified KdV equation of the kink density wave and t
KdV equation of the soliton density wave@8,12,27#. The
kink density wave appears below the coexisting curve. T
soliton density wave appears near the spinodal line~see Fig.
1!. The kink density wave is robust. Even if any disturbanc
are added to the kink density wave, the deformed den
wave returns to the kink density wave in the course of tim
On the other hand, the soliton density wave is unstable e
if perturbations are very small. All perturbations will eith
develop to the kink density wave or dissolve in the course
time.

The modified KdV equations are derived in the unsta

FIG. 8. Time evolution of the headway profiles for the initi
random headway profile at~a! t540, 80, 120, ..., 380, 400,~b! t
5400, 800, 1200, ..., 3800, 4000 wherea52.0, Dx057.0, hc

55.0, N5200.
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region just below the critical point@8,12#. The small positive
scaling parameter«(5A(ac /a)21)!1 is introduced. It rep-
resents the deviation from the critical pointac . One defines
the slow variablesX andT:

X52«~ j 1V8t ! and T5
4

3
«3V8t, ~24!

where V8 is the derivative at the critical point:V8
5@dV(Dx)/dDx#uDx5hc

. The headway is set as follows:

Dxj~ t !5hc12«A V8

uV-u
R~X,T!. ~25!

where V-5@d3V(Dx)/dDx3#uDx5hc
. By inserting Eq.~25!

into Eq.~8! and expanding to the fifth order of«, one obtains
the modified KdV equation with the perturbed term:

«4~]TR2]x
3R1]xR

3!1
3

2
«5S ]x

2R1]x
4R2

2

3
]x

2R3D50.

~26!

Finally, one obtains the kink solution from Eq.~26!:

Dxj~ t !5hc6
A5V8(hc)S ac

a
21D

uV-~hc!u

3tanhFA5S ac

a
21D

2

3H j 1S 12

5S ac

a
21D

6
D V8~hc!tJ G . ~27!

The modified KdV equation is derived just below the critic
point. However, the kink density wave solution~27! agrees
with the simulation result far from the critical point@8,12#.

We derive the KdV equation from Eq.~2!. The KdV
equations are derived near the spinodal line~the neutral sta-
bility line! @27#. The small positive scaling parameter«
(5Auas /a21u)!1 is introduced. It represents the deriv
tion from the neutral stability lineas@52V8(Dx0)#. One de-
fines the slow variablesX andT:

X5«~ j 1V8t ! and T5«3t, ~28!

whereV8 is the derivative on the neutral stability line:V8
5@dV(Dx)/dDx#uDx5Dx0

. The headway is set as follows:

Dxj~ t !5Dx01«2R~X,T!. ~29!

By inserting Eq.~29! into Eq. ~8! and expanding to the sixth
order of«, one obtains the KdV equation with the perturb
term:
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«5aS ]TR2
V8

6
]x

3R2V9R]xRD
1«6FaV8

2
]x

2R1S V82

3
2

aV8

24 D ]x
4R1S V8V9

2
aV9

4 D ]x
2R2G50. ~30!

Finally, one obtains the soliton solution from Eq.~30!:

Dxj~ t !5Dx01
14V8

3V9
Uas

a
21U

3sech2FA7Uas

a
21U

3

3H j 1S 11

14Uas

a
21U

9
D V8tJ G . ~31!

The KdV equation is derived just near the spinodal line.
Thus, the kink and soliton density waves are observ

respectively, below the coexisting curve and near the s
odal line. On the other hand, the triangular shock wave
observed above the coexisting curve when the uniform tra
flow is deformed by the disturbances. The three types
density waves appear corresponding to the three distinc
gions of traffic flow. Here, the three types of density wav
have been found for the same~optimal velocity! model, with
just different parameters.

V. SUMMARY

We have studied the relaxation process of nonunifo
density profile in the stable traffic flow to the uniform de
sity profile with the use of the car-following models. W
have shown, analytically and numerically, how the initia
nonuniform density profile evolves to the uniform dens
profile in the stable traffic region. We have found that t
nonuniform density profile relaxes through the triangu
shock wave to the uniform density profile. It has been sho
that the triangular shock wave is described by the Burg
equations. We have found that the analytical solution of
Burgers equation is consistent with the triangular sho
wave obtained by simulation. Finally, we have conclud
that the three types of density waves appear in the dist
three regions of traffic flow: the first is the kink-antikin
density wave appearing in the unstable region within
g

ug
d,
n-
is
c
f
e-
s

r
n
rs
e
k
d
ct

e

spinodal line, the second is the soliton density wave app
ing near the spinodal line, and the third is the triangu
shock wave appearing in the stable region out of the co
isting curve. These density waves are described, respectiv
by the modified KdV equation, the KdV equation, and t
Burgers equation.

In past works, the traffic jam has been described by
Burgers equation in a particular hydrodynamic model. Ho
ever, the triangular density wave found in this paper is to
best of our knowledge, definitely different from any in pa
works since the triangular shock wave is one of the th
types of density waves and the Burgers equation is deri
from the microscopic model.

APPENDIX

In this appendix, we present the expansions of each t
in Eqs.~7!–~9! to third order of«:

dDxj~ t !

dt
5«2b]xR1«3]TR, ~A1!

d2Dxj~ t !

dt2
5«3b2]x

2R, ~A2!

dDxj~ t1t!

dt
5«2b]xR1«3b2t]x

2R1«3]TR, ~A3!

Dxj~ t1t!5Dx01«R1«2bt]xR1«3
~bt!2

2
]x

2R1«3t]TR,

~A4!

Dxj~ t1t!5Dx01«R1«22bt]xR1«3
4~bt!2

2
]x

2R

1«32t]TR, ~A5!

Dxj 11~ t !5Dx01«R1«2]xR1
«3

2
]x

2R, ~A6!

V~Dxj !5V~Dx0!1V8~Dx0!~Dxj2Dx0!

1
V9~Dx0!

2
~Dxj2Dx0!2, ~A7!

V~Dxj 11!2V~Dxj !5«2V8]xR1«3S V9R]xR1
V8

2
]x

2RD .

~A8!

By inserting~A1!–~A8! into Eqs.~7!–~9!, one obtains Eqs
~12!–~14!.
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