Isolation and structural determination of a new antibacterial compound demethyl-L-681,217 from Streptomyces cattleya

SURE 静岡大学学術リポジトリ Shizuoka University REpository

メタデータ	言語: eng
	出版者:
	公開日: 2016-12-26
	キーワード (Ja):
	キーワード (En):
	作成者: Sugai, Shogo, Komaki, Hisayuki, Hemmi, Hikaru,
	Kodani, Shinya
	メールアドレス:
	所属:
URL	http://hdl.handle.net/10297/9933

1 Note

2 Isolation and structural determination of a new antiba	acterial compound demethyl-L-
--	-------------------------------

- 3 681,217 from *Streptomyces cattleya*
- 4 Running headline: Structural determination of demethyl-L-681,217
- 5 Authors: Shogo Sugai¹, Hisayuki Komaki², Hikaru Hemmi³, Shinya Kodani^{1,4,5}*

Affiliations: ¹Graduate School of Integrated Science and Technology, Shizuoka 6 $\overline{7}$ University, 836 Ohya, Suruga-ku, Shizuoka 422-8529 Japan; ²Biological Resource Center, National Institute of Technology and Evaluation (NBRC), 2-5-8 Kazusakamatari, 8 Kisarazu, Chiba 292–0818, Japan; ³National Food Research Institute, NARO, 2–1-12 9 Kannondai, Tsukuba, Ibaraki 305-8642 Japan; ⁴College of Agriculture, Academic 10 Institute, Shizuoka University, 836 Ohya, Suruga-ku, Shizuoka 422-8529 Japan; 11 ⁵Graduate School of Science and Technology, Shizuoka University, 836 Ohya, Suruga-12ku, Shizuoka 422-8529 Japan 13

14

15 *To whom correspondence should be addressed: Shinya Kodani, College of

16 Agriculture, Academic Institute, Shizuoka University, 836 Ohya, Suruga-ku, Shizuoka

17 422-8529 Japan, Tel/Fax; +81(54)238-5008, E-mail; kodani.shinya@shizuoka.ac.jp

18 Keywords: Streptomyces cattleya, L-681,217, polyketide biosynthesis

19 MAIN TEXT

20	Secondary metabolites including polyketides, nonribosomal peptides and hybrid
21	polyketide-peptides have diverse chemical structures and a wide variety of
22	bioactivities. ¹ Polyketides and nonribosomal peptides are synthesized by large enzyme
23	complexes such as polyketide synthases (PKS) and nonribosomal peptide synthetases
24	(NRPS). ² These biosynthetic proteins are typically encoded in neighboring loci and
25	organized in gene clusters ranging from several to over 200 kb in length. NRPS and
26	PKS employ a very similar strategy like an assembly line for the biosynthesis of two
27	distinct classes of natural products. ³⁻⁵ In addition, NRPS/PKS hybrid biosynthetic
28	systems give structurally more diverse compounds by the combination of NRPS and
29	PKS like building blocks on one assembly line. ⁶
30	The biosynthetic gene cluster of a polyketide kirromycin ⁷ (3 , Fig. 1b) was identified
31	from the genome sequence of <i>Streptomyces collinus</i> ⁸⁻¹⁰ and kirromycin was indicated to
32	be biosynthesized by a large hybrid PKS/ NRPS gene cluster. Among the related
33	compounds including efrotomycin ¹¹ , dihydromocimycin, ¹² heneicomycin, ¹³
34	factumycin, ¹⁴ and kirromycin ¹⁵ , only the biosynthesis of kirromycin has been reported
35	so far. ⁸⁻¹⁰ Previously, a new kirromycin analogue L-681,217 (2 , Fig. 1a) which lacked
36	of pyridine ring was isolated from <i>Streptomyces cattleya</i> ATCC 39203. ¹⁶ Based on the
37	results, we performed chemical investigation on a MeOH extract of S. cattelya NBRC

38	14057 (type strain) to search for new kirromycin analogues. As a result, a new
39	kirromycin analogue demethyl-L-681,217 (1) was isolated as an antibacterial compound
40	from <i>S. cattelya</i> along with a known compound L-681,217 (2). As the genome
41	sequence of the type strain of <i>S. cattletya</i> was previously determined, ¹⁷ the biosynthetic
42	gene cluster was searched for and found based on the similarity to that of kirromycin.
43	Here we describe the isolation and structure determination of a new kirromycin
44	analogue demethyl-L-681,217 (1) and discuss the possible biosynthetic gene cluster.
45	The cultivation of S. cattleya NBRC 14057 was performed with 5 L of ISP2 agar
46	media. After 7 days of cultivation, cells of spore and aerial hyphae were harvested and
47	extracted with MeOH. The MeOH extract was subjected to a CHP-20P column, washed
48	with 60% MeOH, and eluted with 80% MeOH. The 80% MeOH fraction was repeatedly
49	subjected to preparatory HPLC to yield a new compound 1, along with a known
50	compound 2 (Fig. S1).
51	The compound 1 was isolated as a white amorphous powder. High resolution ESI-
52	TOF-MS analysis of 1 gave an $[M+H]^+$ ion at m/z 668.3372 (Fig. S2), consistent with a
53	molecular formula of C ₃₅ H ₅₁ NO ₁₀ (calculated $[M+H]^+$ ion at m/z 668.3410). The
54	molecular formula of 2 was also confirmed to be C ₃₆ H ₅₃ NO ₁₀ (Fig. S3) in the same
55	manner. To obtain further information on the chemical structure, NMR experiments

56	including ¹ H, ¹³ C, DEPT-135, HSQC, HMBC, DQFCOSY, NOESY and TOCSY spectra
57	of 1 and 2 were performed in acetone- d_6 (Fig. S4-10). Identification of the structure of
58	a known compound 2 was performed by 2D NMR spectra (Fig. 1d). Briefly, five
59	partial structures were indicated by five proton-proton spin systems (bold line, 2 in Fig.
60	1d), established by TOCSY and DQF-COSY spectra. The HMBC correlations from
61	H36 to C14, C15, and C16 indicated the connection between the partial structure of C2
62	to C14 and that of C16 to C19. The HMBC correlation from H16 to C14 also
63	supported this connection. The presence of a carboxyl residue at C1 was confirmed by
64	HMBC correlation from H2 to C1. The methoxy residue was assigned as attached at
65	C14 by the HMBC correlation from H35 to C14. The HMBC correlations from H19
66	and H37 to C21 indicated the connection between the partial structure of C16 to C19
67	and that of C22-C37-C38. The HMBC correlations from H22 and H24 to C23
68	indicated the connection between partial structure of C22-C37-C38 and that of C24-
69	C25. The HMBC correlations from H25 and H27 to C26 indicated the connection
70	between partial structure of C24-C25 and that of C27 to C33. The NOESY correlation
71	between H25 and H27 also supported this connection. The methyl residue was
72	indicated as attached to C26 by the HMBC correlations from H39 to C25, C26, and
73	C27. The presence of a tetrahydropyran ring was confirmed by HMBC correlation

74	from H27 to C23. Regarding the assignment of tetrahydrofuran ring, a NOESY
75	correlation between H8 and H11 was not observed, although a NOESY correlation
76	between H9 and H11 was observed. In comparison with the reported NMR data of the
77	related compound, ¹⁸ the similarity of the chemical shifts indicated the presence of
78	tetrahydrofuran ring.
79	The structure determination of 1 was accomplished by the comparison with the NMR
80	data of 2 (Table S1). Judging from the molecular weight (Fig. S2 and S3), the
81	discrepancy between 1 and 2 was expected to be one methylene residue. As a result of
82	interpretation of NMR data, the chemical shifts of 1 and 2 were almost identical except
83	for a methyl and a methylene residue (Table S1). Methyl residue (δH 0.94, triplet) and
84	methylene residue (δ H 1.63 and 1.72, multiplet) was lacking in the NMR spectrum of 1
85	and new methyl residue (δ H 1.20, doublet) was observed in the NMR spectrum of 1 .
86	The C37 methyl group (δ H 1.20, doublet) was connected to C22 by correlation of
87	HMBC (Fig. 1c). In the same manner with 2 , five proton-proton spin systems (bold
88	line, 1 as shown in Fig 1c) were established by TOCSY and DQF-COSY spectra. The
89	connections of the smaller spin systems were established by HMBC correlations shown
90	in Fig. 1c (one way arrows). Regarding the assignment of the tetrahydropyran ring,
91	HMBC correlation from H27 to C23 was not observed. The proton and carbon

 $\mathbf{5}$

92	chemical shifts at position 8, 11, 23, 27 were almost identical with those of L-681,217
93	(Table S1). Thus, we concluded the structure to be 1 as shown in Fig. 1a.
94	The antimicrobial activities were measured by using a paper disk diffusion assay
95	against bacterial strains (Escherichia coli, Pseudomonas aeruginosa, Serratia
96	marcescens, Bacillus subtilis, Staphylococcus aureus, Micrococcus luteus, Streptomyces
97	antibioticus), yeast strains (Saccharomyces cerevisiae, Schizosaccharomyces pombe,
98	Kloeckera apiculata), and fungal strains (Aspergillus niger, Aspergillus oryzae, Mucor
99	<i>hiemalis</i>). At the dosage of 10 μ g/disk, 1 and 2 showed the inhibitory zones of 13 mm
100	and 18mm in diameter, respectively, only against S. antibioticus. Interestingly, neither
101	compound showed any antimicrobial activity against other tested microorganisms under
102	these conditions.
103	As the complete genome sequence of S. cattleya NRRL 8057 (NBRC 14057) is
104	available publicly, ¹⁷ we searched for the loci encoding the biosynthesis of the two
105	compounds L-681,217 and demethyl-L-681,217 (L-681,217s) in the genome sequence,
106	and consequently found a large hybrid PKS/NRPS gene cluster shown in Table S2. This
107	cluster encoded five modular PKSs lacking internal AT domains (trans-AT type PKSs),
108	two acyltransferases, one NRPS, two cytochrome P450s and one methyltransferase,
109	which show high sequence homologies to enzymes for kirromycin synthesis ¹⁰ . Because

110	L-681,217s are structurally related to kirromycin and the genome of <i>S. cattleya</i> NRRL
111	8057 harbors no other such gene cluster, we assumed this to be the biosynthetic gene
112	cluster for L-681,217s and then bioinformatically analyzed. The module and domain
113	organization of the hybrid PKS/NRPS gene cluster is shown in Figure 2. This cluser
114	harbors 15 modules, which are very similar to 15 of 17 modules present in the
115	kirromycin-synthetic gene cluster. ¹⁰ According to the collinearity rule of the modular
116	PKS/NRPS assembly line ⁶ and the similarity to kirromycin biosynthetic pathway, we
117	predicted the chemical structure of the backbone synthesized by these enzymes. The
118	domain organization of these PKS and NRPS proteins well agreed with the backbone
119	structures of L-681,217s except for the difference at C25. Since module 4 has a DH-KR
120	pair as the optional domain, the C-C bond between C25 and C26 would be double in L-
121	681,217s, but it is actually single and C25 has a hydroxyl group. Hence, we assumed the
122	DH domain in module 4 is inactive. The analysis of the PKS and NRPS module
123	organization indicates that the biosynthesis starts with loading of an acetyl-CoA to
124	SCAT_3576. The polyketide chain is extended by the PKS modules (modules 1 to 5) of
125	SCAT_3576 and SCAT_3577, then condensed with glycine by the hybrid NRPS/PKS
126	SCAT_3578, and further extended by SCAT_3579 to SCAT_3581. During or after
127	release of the linear precursor of L-681,217s, this intermediate must undergo cyclization

128	to yield two intramolecular rings and modifications. O-methylation of the keto group at
129	C14 is presumably catalyzed by the methyltransferase of SCAT_3585. Cytochrome
130	P450 of SCAT_3583 or SCAT_3588 is predicted to add an oxygen molecule at C26,
131	yielding a hydroxyl group. Demethyl-L-681,217 is produced if module 5 loads
132	methylmalonyl-CoA, whereby L-681,217 is produced if module 5 loads ethylmalonyl-
133	CoA. However the situation appears to be more complex than that, as two discrete
134	acyltransferases are encoded as SCAT_3584 and SCAT_3586, respectively. SCAT_3584
135	contains two acyltransferase (AT) domains whose substrates are predicted to be
136	malonyl-CoA. In contrast, SCAT_3586 contains only a single AT domain, which is
137	predicted to recognize methylmalonyl-CoA as the substrate by the analysis using
138	antiSMASH ¹⁹ . Like KirCI and KirCII for kirromycin, one of the acyltransferases may
139	be responsible for loading the ACPs needed for extension of the polyketide chain with
140	malonyl-CoA, whereas the other may catalyze the loading the ACPs of modules 5, 9
141	and 14 with alkylmalonyl-CoA such as methylmalonyl-CoA or ethylmalonyl-CoA.
142	Although each of C15 and C24 also has a methyl side chain, these methyl groups are
143	not derived from incorporation of methylmalonyl-CoA, but modules 3 and 8 incorporate
144	malonyl-CoA molecules in the elongating polyketide chain and then the
145	methyltransferase (MT) domains in these modules methylate the positions. Above all,

146	we concluded that this gene cluster is responsible for the synthesis of L-681,217s and
147	proposed the biosynthetic pathway, although genetic experiments such as gene
148	distruption are needed to completely prove it.
149	Materials and Methods
150	Bacterial strains
151	The producing strain Streptomyces cattleya NBRC 14057 and test microorganisms
152	(bacterial strains including, Escherichia coli NBRC 102203, Pseudomonas aeruginosa
153	NBRC 12689, Serratia marcescens NBRC 102204, Bacillus subtilis NBRC 13719,
154	Staphylococcus aureus NBRC 100910, Micrococcus luteus NBRC 3333; Streptomyces
155	antibioticus NBRC 3117, yeast strains including Saccharomyces cerevisiae NBRC
156	2376, Schizosaccharomyces pombe NBRC 0340, Kloeckera apiculata NBRC 0154;
157	fungal strains including Aspergillus niger NBRC 33023, Aspergillus oryzae NBRC
158	4290, Mucor hiemalis NBRC 9405) for antimicrobial assays were obtained from the
159	NBRC culture collection (NITE Biological Resource Center, Tokyo, Japan).
160	Isolation of demethyl-L-681,217
161	Streptomyces cattleya NBRC 14057 was cultured using 5 L of ISP2 agar medium for 7
162	days at 30 °C. The aerial hyphae and spore cells on the agar surface were harvested
163	with a steel spatula. Double volume of MeOH was added to the harvested cells,

164	followed by filtration with paper filter (Whatman No. 1, GE Healthcare Life Sciences,
165	Little Chalfont, UK). The MeOH extract was concentrated to an aqueous residue
166	using a rotary evaporator. The aqueous residue was subjected to open column
167	chromatography using hydrophobic resin CHP-20P (Mitsubishi Chemical, Tokyo,
168	Japan), eluted with 10% MeOH, 60% MeOH, 80% MeOH, and 100% MeOH. The 80%
169	MeOH fraction was concentrated, and subjected to HPLC separation using an ODS
170	column (4.6 \times 250 mm, Wakopak Handy-ODS, Wako Pure Chemical Industries, Ltd.,
171	Osaka, Japan), with elution (linear gradient of 25 to 55% MeCN containing 0.05%
172	trifluoroacetic acid at the flow rate of 1 ml/min for 20 min, monitoring 220 nm
173	absorbance) to yield 1.3 mg of demethyl-L-681,217 and 2.0 mg of L-681,217 at the
174	retention times of 17.2 and 18.8 min, respectively (Fig. S1).
175	NMR experiments
176	Two NMR samples were prepared by dissolving 1 or 2 in 500 μ l of acetone-d ₆ ,

177 respectively. 1D ¹H, ¹³C, DEPT-135, and all 2D NMR spectra were obtained on a

- 178 Bruker Avance800 spectrometer with quadrature detection (Bruker BioSpin,MA, USA).
- 179 The 1D ¹H, ¹³C, DEPT-135 spectra were recorded at 25 °C with 11 ppm for proton and
- 180 240 ppm for carbon. The following 2D ¹H-NMR spectra were recorded at 25 °C with 10
- 181 ppm spectra widths in t1 and t2 dimensions in the phase sensitive mode by States-TPPI¹⁷

182	method: 2D double quantum filtered correlated spectroscopy (DQF-COSY), recorded
183	with 512 and 1024 complex points in $t1$ and $t2$ dimensions; 2D homonuclear total
184	correlated spectroscopy (TOCSY) with MLEV-17 mixing sequence, recorded with
185	mixing time of 120 ms, 512 and 1024 complex points in <i>t1</i> and <i>t2</i> dimensions; 2D nuclear
186	Overhauser effect spectroscopy (NOESY), recorded with mixing time of 300 ms, 256 and
187	1024 complex points in $t1$ and $t2$ dimensions. 2D ¹ H– ¹³ C heteronuclear single quantum
188	correlation (HSQC) and heteronuclear multiple bond connectivity (HMBC) spectra were
189	acquired at 25 °C in the echo-antiecho mode ¹⁸ or in the absolute mode, respectively. The
190	¹ H– ¹³ C HSQC and HMBC spectra were recorded with 1024 and 512 complex points for
191	12 ppm in the ¹ H dimension and 160 ppm in the ¹³ C dimension or for 10 ppm in the ¹ H
192	dimension and 210 ppm in the ¹³ C dimension, respectively, at a natural isotope abundance
193	All NMR spectra were processed using XWINNMR (Bruker). Before Fourier
194	transformation, the shifted sinebell window function was applied to $t1$ and $t2$ dimensions
195	except for the HMBC spectrum. All ¹ H and ¹³ C dimensions were referenced to acetone-
196	<i>d</i> ₆ at 25°C.

ESI-MS experiments 197

ESI-TOF-MS spectra were recorded using a JEOL JMS-T100LP mass spectrometer. 198For high resolution ESI-TOF-MS analysis, reserpine was used as an internal standard for 199

200 canolation.	200	caliblation.
-----------------	-----	--------------

201 Antimicrobial assays

202	By using a paper disk diffusion assay (6mm i.d., thick type) in the same manner of
203	our previous report, ²⁰ the antimicrobial activity of 1 and 2 was mesured against all the
204	test microorganism. Compunds 1 and 2 was dissolved in MeOH at the concentration
205	of 1 mg/mL. After all the test microroganisms were inoculated onto ISP2 agar
206	medium, paper disks (10 μ g each/disk) were placed onto the surface of the agar
~~~	

- 207 medium, and paper disk with MeOH (10  $\mu$ L) was used as a negative control. After
- 208 incubation for 2 days at 30°C, the diameter of the inhibitory zone was measured for
- 209 evaluation of antimicrobiol activity.
- 210

## 211 Acknowledgement

- 212 This study was supported by the Japan Society for the Promotion of Science by
- 213 Grants-in-aids (grant number 25350964).

#### 214

### 215 **Conflict of interest**

216 The authors had no conflict of interest in undertaking this project.

# **References**

219	1.	Wang, H., Sivonen, K. & Fewer, D. P. Genomic insights into the distribution,
220		genetic diversity and evolution of polyketide synthases and nonribosomal
221		peptide synthetases. Current Opinion in Genetics & Development. 35, 79-85
222		(2015)
223	2.	Sundaram, S. & Hertweck, C. On-line enzymatic tailoring of polyketides and
224		peptides in thiotemplate systems. Curr Opin Chem Biol. 31, 82-94 (2016)
225	3.	Du, L. & Shen, B. Biosynthesis of hybrid peptide-polyketide natural products.
226		Curr Opin Drug Discov Devel. 4, 215-228 (2001)
227	4.	Du, L., Sanchez, C. & Shen, B. Hybrid peptide-polyketide natural products:
228		biosynthesis and prospects toward engineering novel molecules. Metab Eng. 3,
229		78-95 (2001)
230	5.	Du, L., Cheng, Y. Q., Ingenhorst, G., Tang, G. L., Huang, Y. & Shen, B. Hybrid
231		peptide-polyketide natural products: biosynthesis and prospects towards
232		engineering novel molecules. Genet Eng (NY). 25, 227-267 (2003)
233	6.	Fischbach, M. A. & Walsh, C. T. Assembly-line enzymology for polyketide and
234		nonribosomal peptide antibiotics: logic, machinery, and mechanisms. Chem Rev.
235		<b>106</b> , 3468-3496 (2006)

236	7.	Dahn, U., Hagenmaier, H., Hohne, H., Konig, W. A., Wolf, G. & Zahner, H.
237		Stoffwechselprodukte von mikroorganismen. 154. Mitteilung. Nikkomycin, ein
238		neuer hemmstoff der chitinsynthese bei pilzen. Arch Microbiol. 107, 143-160
239		(1976)
240	8.	Laiple, K. J., Hartner, T., Fiedler, H. P., Wohlleben, W. & Weber, T. The
241		kirromycin gene cluster of Streptomyces collinus Tu 365 codes for an aspartate-
242		alpha-decarboxylase, KirD, which is involved in the biosynthesis of the
243		precursor beta-alanine. J Antibiot (Tokyo). 62, 465-468 (2009)
244	9.	Musiol, E. M., et al. Supramolecular templating in kirromycin biosynthesis: the
245		acyltransferase KirCII loads ethylmalonyl-CoA extender onto a specific ACP of
246		the trans-AT PKS. Chem Biol. 18, 438-444 (2011)
247	10.	Weber, T., et al. Molecular analysis of the kirromycin biosynthetic gene cluster
248		revealed beta-alanine as precursor of the pyridone moiety. Chem Biol. 15, 175-
249		188 (2008)
250	11.	Wax, R., Maises, W., Weston, R. & Birnbaum, J. Efrotomycin, a new antibiotic
251		from Streptomyces lactamdurans. J Antibiot (Tokyo). 29, 670-673 (1976)
252	12.	Maehr, H., Leach, M., Williams, T. H. & Blount, J. F. The chemistry of aurodox
253		and related antibiotics. Can. J. Chem. 58, 501-526 (1980)

254	13.	Zimmerman, S. B., Chalmers, J. H., Jr., Dewey, R. S., Stapley, E. O. &
255		Hernandez, S. Heneicomycin, a new antibiotic (A21A): fermentation, isolation,
256		and antibacterial spectrum. J Antibiot (Tokyo). 32, 665-666 (1979)
257	14.	Gullo, V. P., et al. Factumycin, a new antibiotic (A40A): fermentation, isolation
258		and antibacterial spectrum. J Antibiot (Tokyo). 35, 1705-1707 (1982)
259	15.	Thein-Schranner, I., Zahner, H., Hoppe, H. U., Hummel, I. & Zeeck, A.
260		Metabolic products of microorganisms. 209 Kirrothricin, a new member of the
261		kirromycin-group. J Antibiot (Tokyo). 35, 948-956 (1982)
262	16.	Kempf, A. J., Wilson, K. E., Hensens, O. D., Monaghan, R. L., Zimmerman, S.
263		B. & Dulaney, E. L. L-681,217, a new and novel member of the efrotomycin
264		family of antibiotics. J Antibiot (Tokyo). 39, 1361-1367 (1986)
265	17.	Barbe, V., et al. Complete genome sequence of Streptomyces cattleya NRRL
266		8057, a producer of antibiotics and fluorometabolites. J Bacteriol. 193, 5055-
267		5056 (2011)
268	18.	McDonald, L. A., Lotvin, J. A., Bailey, A. E. & Carter, G. T. Biosynthesis of
269		ganefromycin: results from blocked mutants and bioconversion experiments. $J$
270		Nat Prod. 61, 217-226 (1998)
271	19.	Blin, K., et al. antiSMASH 2.0a versatile platform for genome mining of

272		secondary metabolite producers. <i>Nucleic Acids Res.</i> <b>41</b> , W204-212 (2013)
273	20.	Kodani, S., Murao, A., Hidaki, M., Sato, K. & Ogawa, N. Isolation and
274		structural determination of a new macrolide, makinolide, from the newly
275		isolated Streptomyces sp. MK-30. J Antibiot (Tokyo). 65, 331-334 (2012)
276		

## 278 Figure legends

279

280	Figure 1. a,	Chemical structures o	f demethyl-L-681,	217 (1) and	d L-681,217 (2); b,
	0 ,		,		, , , , ,

281 Chemical structure of kirromycin (3); c, Key 2D NMR correlations for structure

determination of 1; d, Key 2D NMR correlations for structure determination of 2

283

284	Figure 2.	Proposed	biosynthetic	pathway	of demethyl-L-	681,217 (1) a	nd L-681,217 (	(2).
	0	1	5	1 2	<i>J</i>		, ,	

- A, adenylation; ACP acyl carrier protein; C, condensation; DH, dehydratase; DH*,
- inactive DH; KS, ketosynthase; KR, ketoreductase; MT, methyltransferase; PCP,
- 287 peptidyl carrier protein.

288

289

290





Figure1. Sugai et al.



