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The biosynthetic pathway of 
2-azahypoxanthine in fairy-ring 
forming fungus
Tomohiro Suzuki1,2, Naoki Yamamoto3,† , Jae-Hoon Choi2,4, Tomoyuki Takano3, Yohei Sasaki3, 
Yurika Terashima4, Akinobu Ito4, Hideo Dohra2, Hirofumi Hirai2,4,5, Yukino Nakamura3, 
Kentaro Yano3 & Hirokazu Kawagishi2,4,5

“Fairy rings” resulting from fungus-stimulated plant growth occur all over the world. In 2010, 
2-azahypoxanthine (AHX) from a fungus Lepista sordida was identified as the “fairy” that stimulates 
plant growth. Furthermore, 2-aza-8-oxohypoxanthine (AOH) was isolated as a common metabolite 
of AHX in plants, and the endogenous existence of AHX and AOH in plants was proved. The structure 
of AHX allowed us to hypothesize that AHX was derived from 5-aminoimidazole-4-carboxamide 
ribonucleotide (AICAR). Thus, we performed a feeding experiment that supplied AICAR to L. sordida. 
Consumption of AICAR and accumulation of AHX were observed after feeding. The mycelia extract had 
enzymatic activity of adenine/5-aminoimidazole-4-carboxamide phosphoribosyltransferase (APRT). 
APRT gene of L. sordida revealed its structural characteristics in homology modeling and showed 
transcriptional enhancement after feeding. These results support that AHX was synthesized from AICAR 
and AHX biosynthesis was transcriptionally controlled by AICAR, indicating the presence of novel purine 
metabolic pathway in L. sordida.

“Fairy rings” is a disease symptom in lawn; rapidly growing, lush green circular bands of grass and/or circles of 
mushrooms are observed1. It has been found that more than 60 of basidiomycete fungi form fairy rings1,2. Fairy 
ring disease has been found on all grass types all over the world3, particularly on golf courses and athletic fields. 
It is often observed in hot, dry and drought weather conditions. The disease symptoms shows plant withering, 
wilting in rings, or activation of plant growth such as dark green turf grass4, leading to stimulated, or no influence 
on growth5.

Lepista sordida (division: Basidiomycota, order: Agaricales) has been a targeted fungus to study the fairy ring 
formation mechanism in research. Fairy rings caused by L. sordida have been reported on Zoysia grass (Zoysia 
matrella and Zoysia japonica Steud)5. Recently, insight into the molecular mechanism of fairy ring formation 
lead to the isolation of a plant growth regulator, 2-azahypoxanthine (AHX), from the fungus6. AHX stimulated 
the growth of various kinds of plants including turfgrass6. Subsequently, 2-aza-8-oxohypoxanthine (AOH) was 
isolated from rice as a derivative metabolite of AHX7. Both the compounds increased grain yields of wheat and 
rice in field experiments8. AHX is chemically synthesized from 5-aminoimidazole-4-carboxamide (AICA); AICA 
reacts with NaNO2 and then with NH3, giving AHX7. AHX and its ribotide (AICAR) are common members on 
the purine metabolic pathway in animals, plants and microorganisms, and AICAR is a precursor of fundamental 
metabolites such as inosine monophosphate (IMP), inosine, hypoxanthine, xanthine and uric acid in the pathway. 
From our findings and the facts mentioned above, we hypothesized that plants themselves produce AHX through 
a pathway similar to the chemical synthesis, and we proved the hypothesis experimentally7. However, it remains 
unknown whether the pathway exists in fairy-ring forming fungi and how AICA is synthesized in cells.
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Adenine/5-aminoimidazole-4-carboxamide phosphoribosyltransferase (APRT; EC 2.4.2.7) also called 
as nucleotide pyrophosphorylase is involved in AHX biosynthesis. APRT catalyzes the reversible trans-
fer of the 5′ -phosphoribosyl moiety from α -D-5-phosphoribosyl-1-pyrophosphate (PRPP) to adenine to 
form adenosine-5-monophosphate (AMP) and pyrophosphate (PPi)9. It also recognizes hypoxanthine, 
2,6-diaminopurine, and AICA as substrates, although its binding affinities to the substrates are weaker compared 
to adenine10. Nucleotide pyrophosphorylase purified from beef liver converted AICAR and pyrophosphate to 
AICA and 5-phosphoribosyl pyrophosphate11. APRT is conserved in various organisms: animals, bacteria, and 
plant species12–17. The primary role of APRT is in adenine salvage and recycling18,19. In APRT-deficient human 
cells, adenine is converted to 2,8-dihydroxyadenine (DHA) by xanthine dehydrogenase, and accumulation of 
DHA is toxic to renal tubular and interstitial cells20. In the flowering plant, Arabidopsis, mutations in APRT 
affected pollen development causing male sterile21. APRT protein and its crystal structure from animals, bacteria, 
protista, fungi and archaea have been determined until now has been well-studied9,22–27. By contrast, there is still 
no knowledge on APRT in fairy ring-forming fungi.

The goal of this study is to examine whether AICAR could be a substrate for AHX biosynthesis in L. sordida. 
In this study, we provide answers for the three following points: 1) how feeding of AICAR in L. sordida mycelia 
culture affects on AHX accumulation and APRT gene expression, 2) what are the structural features of APRT, 
and 3) whether L. sordida mycelia has an enzyme activity for interconversion between AICAR and AICA or not.

Here, we performed a feeding experiment that supplied AICAR into L. sordida, determination of 
AICAR-converting activity of the crude enzyme extract from the mycelia, identification and isolation of an APRT 
gene in the fungus, and investigation of expression levels of the APRT gene during the feeding experiment.

Results
Feeding of AICAR into mycelia culture. In the hypothesized AHX/AOH biosynthetic pathway, AICAR 
is the initial precursor through AICA (Fig. 1). If this hypothesis is true, provision of AICAR to L. sordida should 
activate accumulation of AHX in the fungus. Therefore, we fed AICAR to L. sordida culture and quantified the 
amounts of AICAR and AHX until 48 h after feeding. AICAR concentration of non-fed control was between 
81.5 ±  7.8 and 111.0 ±  11.5 μ M during the experiment. The feeding increased the concentration of AICAR to 
232.8 ±  9.8 μ M from 87.8 ±  12.1 μ M at 0 h, and then continuously decreased until 48 h after feeding (Fig. 2A). 
In comparison of these two samples, significant difference was observed at 12 h after feeding (Fig. 2A). These 
results indicated that a large part of AICAR fed was consumed within 24 h after feeding. However, no signif-
icant difference was observed in the non-fed control of AHX, its concentration decreased to 375.8 ±  30.8 μ M  
from 454.5 ±  32.8 μ M at 12 h after feeding. The feeding of AICAR slightly increased AHX accumulation to 
475.9 ±  35.2 μ M at 12 h after feeding, and decreased to 401.3 ±  28.1 μ M at 24 h after feeding. Comparing these 
two results show significant difference between fed and non-fed groups at 12 h after feeding (P ≤  0.05 at 12 h). All 
the results indicated that there exists a correlation between consumption of AICAR and accumulation of AHX in 
the mycelia culture at 12 h after feeding and AICAR was utilized for AHX biosynthesis in the mycelia.

Figure 1. Hypothetical biosynthetic pathway for AHX/AOH. PRPP, phosphoribosyl pyrophosphate; 
FAICAR, N-formyl-5-aminoimidazole-4-carboxamide; IMP, inosine monophosphate; XMP, xanthosine 
monophosphate. Dotted arrow indicates multiple enzymatic reaction steps.
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Enzymatic activity assay in mycelia. Crude extract from the mycelia culture was prepared and tested 
for AICAR conversion to AICA in the extract, using LC-MS/MS. As shown in Fig. 3, the crude extract with 
AICAR produced AICA. Whereas, AICA was not detected in reactions without either substrate or enzyme 
(Fig. 3B and D). These results showed that mycelia contained enzyme(s) converts AICAR to AICA.

Identification of APRT gene. To explore APRT genes in L. sordida, genomic scaffolds were generated 
by next-generation sequencing approach. A hybrid sequencing strategy by 454 pyrosequencing and Illumina 
sequencing techniques was employed. For 454 pyrosequencing, 915,457 of reads were generated. For Illumina 
sequencing, 66,506,146 and 71,023,220 short reads were generated from the PE-library and MP-library, respec-
tively. The short reads were preprocessed to extract 79,179,992 of high-quality reads in total (See details in 
Materials and Methods and Supplementary Table 1). The data were conducted to a hybrid assembly strategy  
(See details in Materials and Methods). As a result, 812 of genomic scaffolds were constructed (Supplementary Table 2). 
The scaffold sequences were then applied to a search for APRT gene. Namely, we queried an APRT sequence in 
yeast (Genbank ID: L14434.1) by nhmmer search against the genomic scaffolds. The search identified a genomic 
scaffold including a potential APRT gene in L. sordida as a top hit with statistical significance (E-value of 8E-4) 
(Supplementary Fig. 1A). The second hit showed no statistical significance (E-value of 5.3). By aligning the APRT 
gene sequence with those of Coprinopsis cinerea and Moniliophthora roreri (Genbank ID: XM_001837049 and 
XM_007844891, respectively), the coding region was predicted (Supplementary Fig. 1B).

cDNA cloning of APRT in L. sordida. cDNA of APRT was isolated from the mycelia of L. sordida. The 
cDNA amplified by RT-PCR was cloned into a vector pMD20-T sequenced (deposited to DDBJ, accession 
number LC060066). cDNA sequence perfectly matched with the predicted coding sequence from the genomic 
scaffold (data not shown). The open reading frame was 546 bp length, and it coded 182 amino acid protein 
(Supplementary Fig. 2). The deduced amino acid sequence showed significant homologies with those of APRTs in 
Saccharomyces cerevisiae (51%), Drosophila pseudoobscura (43%), Mus musculus (44%), Rattus norvegicus (41%), 
Homo sapiens (40%), Arabidopsis thaliana (44% and 38%), Escherichia coli (40%), and Leishmania donovani 
(32%).9,14–16,23,28–31. We observed core motif sequences of APRT in the L. sordida APRT (Fig. 4). Phosphoribosyl 
pyrophosphate (PRPP)-binding motifs, composed of citrate contact region in crystal structures of L. donovani 
APRT23 and 5′ -phosphate contact region in S. cerevisiae APRT9, were completely conserved in L. sordida. The 
amino acid position of 129 and 137, residues of Mg2+ binding were also conserved in APRTs31–36.

In structural analysis of the APRT, predicted five of α -helix and nine of β -strand structures seen in S. cerevisiae  
were also observed in the APRT of L. sordida (Fig. 4). A missing region (51-Thr-Ile-Thr-Lys-54), which was con-
served among fungi, was also present. This region formed a part of loop in homology modeling with APRT in  
S. cerevisiae by SWISS-MODEL (Supplementary Fig. 3). The insertion of the missing region in APRT in L. sordida 
provided a larger space inside of the loop. Notably, the missing region contained a distinctive conserved amino 
acid Lys-54 between L. sordida and a fairy ring-forming fungi Paxillus involutus (Fig. 4). ProtScale analysis rep-
resented the loop region was more hydrophilic than that of S. cerevisiae (Supplementary Fig. 4). These results 
suggested that the loop in L. sordida has high flexibility.

Gene expression analysis of APRT and AICARFT gene. We examined the effect of AICAR feeding on 
APRT and AICARFT at mRNA level. Gene expression of APRT and AICARFT in mycelia culture was analyzed 
by qRT-PCR. In gene expression of APRT, the relative expression level of control did not change significantly. 
In contrast, APRT started to increase at 12 h after feeding and maintained at high levels until 36 h after feeding 
(Fig. 5A). The response was consistent with AHX accumulation at 12 h after feeding (Fig. 2B). The AICARFT 
expression level of non-fed control was between 0.84 ±  0.05 and 1.4 ±  0.3 during the experiment. Although there 
was no significant difference of AICARFT expression level between fed and non-fed groups, expression level of 

Figure 2. Transitional changes of AICAR and AHX contents in mycelia culture after feeding of AICAR. 
Error bar represents standard deviation of five biological replicates. Asterisk represents statistical significance of 
difference from control at 5% level. (A) AICAR. (B) AHX. The sample after feeding of AICAR is indicated with 
white circles and control (without AICAR) is indicated with black circles.
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AICAR fed groups tended to slightly decrease at 12 h after feeding. These results suggested that AICARFT con-
stantly expressed and the significant response to AICAR feeding was not observed in L. sordida mycelia culture.

Discussion
In this study, we established a feeding experiment procedure in L. sordida mycelia culture for exploring enzyme 
genes in AHX and AOH biosynthetic pathway. After feeding of AICAR to the mycelia culture, consumption of 
AICAR and accumulation of AHX were observed in the culture (Fig. 2). In the feeding experiment, the APRT gene 
enhanced after 12 h of feeding (Fig. 5). These results suggested that the APRT gene acted upon AHX and AOH 
biosynthesis. Moreover, the presence of AICAR-converting enzyme in the crude enzyme extract of L. sordida  
mycelia was demonstrated by detecting AICA in LC-MS analysis. Our data suggested that the APRT gene 
responded to addition of AICAR and also might be involved in converting AICAR to AICA in the mycelia extract.

Figure 3. Analysis of APRT activity in crude enzyme extract by LC-MS/MS. Multiple reaction monitoring 
(MRM) for AICA including MS (left side) and MS/MS spectra (right side). (A) AICA standard. (B) Buffer 
(100 mM Tris-HCl, pH 8.3) and AICAR. (C) Crude enzyme extract and AICAR. (D) Crude enzyme extract and 
distilled water. Arrow indicates a signal of AICA.



www.nature.com/scientificreports/

5Scientific RepoRts | 6:39087 | DOI: 10.1038/srep39087

Despite the drastic reduction of AICAR until 48 h after feeding, clear increase of AHX was only observed at 
12 h after feeding. But, gene expression level of APRT was high for more than 36 h which indicated that synthe-
sized AHX might be promptly metabolized or converted to other derivative(s). Alternatively, AICAR might have 
been utilized for biosynthesis of more fundamental metabolites like IMP, inosine, hypoxanthine, uric acid and so 
on. In fact, AICAR formyltransferase (AICARFT), which catalyzes transfer of a formyl group to AICAR to pro-
duce N-formyl-5-aminoimidazole-4-carboxamide (FAICAR), was coded in the genome assembly of L. sordida37. 
Although AICARFT consumes AICAR and biosynthesizes the downstream metabolites, our data suggested that 
significant changes in expression level of AICARFT gene after AICAR feeding were not observed. The reason for 

Figure 4. A multiple alignment of APRTs in 13 species. Conserved sequence in all the APRT and 12 APRT 
are colored in yellow and blue, respectively. Residues involved in 5′ -phosphate binding and Mg-pyrophosphate 
binding were circled in red and in black, respectively. The following APRTs were applied (GenBank accession 
numbers in parentheses): P.involutu, Paxillus involutus (KIJ20178.1); M.roreri, Moniliophthora roreri 
(XM_007844891.1); C. cinerea, Coprinopsis cinerea (XM_001837049.1); S. cerevi, Saccharomyces cerevisiae 
(P49435); D. pseudo, Drosophila pseudoobscura (L06281.1); M. musculus, Mus musculus (NM_009698.2); R. 
norvegi, Rattus norvegicus (NM_001013061.1); H. sapiens, Homo sapiens (P07741); A. thali-1, Arabidopsis 
thaliana (L19637.1); A. thali-2, Arabidopsis thaliana (X96867.1); E. coli, Escherichia coli (M14040.1) ; L. 
Donovani, Leishmania Donovani; (1QB7_A).

Figure 5. Gene expression of APRT and AICARFT in response to AICAR feeding. X-axis represents 
normalized gene expression level of the APRT (A) and AICARFT (B) by an actin. Error bar indicates standard 
deviation of four biological replicates. Asterisk represents significant difference to from negative control 
(P <  0.05 by Student’s T-test). The sample after feeding of AICAR is indicated with white circles and control 
(without AICAR) is indicated with black circles.
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this disagreement between results of feeding experiment and gene expression analysis in this study still remains 
unknown. Further analysis is needed to disclose other unknown metabolite(s) and derivative(s) in the future.

The consistent relationship between AICAR feeding and response of APRT at 12 h after feeding was observed 
in this report. Hence, what’s upstream of the APRT in L. sordida? To our knowledge, there is no report for tran-
scriptional regulation mechanism of APRT in mushrooms. Mummaneni et al. (1993) reported that the promoter 
region of a mouse APRT was subjected to DNA methylation38. In the Chinese hamster, two putative GC factor 
(GCF) -binding sites suppress transcription of APRT39. In order to test a potential involvement of GCF for AHX 
biosynthesis and fairy ring formation, the feeding experiment of AICAR and the genome sequence in L. sordida 
would be useful. Detailed genome annotation of L. sordida is now underway to clarify further understanding of 
fairy ring formation.

Fungal genomes were analyzed by next-generation sequencing40. As fairy ring forming fungi, only P. involutus 
was sequenced41. However, there is no mechanistic information on the fairy ring formation in the species. Here, 
to promote elucidation of molecules for fairy ring formation mechanism, we conducted genome sequencing in 
L. sordida as its fairy ring formation mechanism was previously reported6. Hybrid assembly of the generated 
sequence reads provided a reference genome scaffold in L. sordida, and it was sufficient for identification of the 
APRT gene. The comparison of APRT sequences between L. sordida and P. involutus revealed conserved amino 
acid residues between fairy ring-forming fungi. The genomic information of L. sordida and P. involutus opens new 
avenues for elucidation of the mechanism of fairy ring formation.

A crystal structure analysis revealed the adenine binding domain of APRT in L. donovani23. This study 
reported Arg-40, Phe-41, and Ala-42 (corresponding to Val-22, Phe-23, and Leu-24, respectively, in L. sordida, 
Fig. 4) were residues to form hydrogen bonds with adenine of AMP. Interestingly, Sarver and Wang (2002) doc-
umented that a point mutation of the Phe of APRT in Giardia lamblia to Trp residue showed no obvious effect 
on adenine binding property42. Furthermore, the remaining two residues, Arg-40, and Ala-42 were substituted 
to Val and Leu, respectively, in mushroom-forming fungi (Fig. 4) and the substitutions caused a conformational 
change in region in our homology modeling (Fig. 6A). In L. sordida, the position of the Val residue shifted to just 
below Arg-40 of L. donovani APRT, and it extended the distance between adenine and the carbonyl group of the 
Val for the hydrogen bond (Fig. 6A and B). We propose the binding model of AICAR and AMP to L. donovani 
and L. sordida APRT as shown in Fig. 6B–D and E. The result suggested that L. sordida APRT has lower affinity to 
AMP, and might cause an increase in relative affinity to AICAR. Thus, decrease in affinity for AMP might affect 
the efficiency of AICAR usage in APRT from L. sordida.

Several other sites showing diversity between fairy ring-forming fungi and other organisms were found 
(Fig. 4). Although the position of 116 was neutral and acidic amino acid in other APRTs, Glu-116 was conserved 
between L. sordida and P. involutes (Fig. 4). Amino acid positioned on the dimer surface (due to electrical charge) 
might be involved resulting in their formation and the stability (Supplementary Fig. 3C). The position 139 was 
also substituted with Arg in fairy ring-forming fungi, and Arg-139 is component of α -helix near 5′  phosphate 

Figure 6. Structure comparison between L. sordida and L. donovani APRT. (A) Three-dimensional 
structural modeling was performed on SwissModel server with the L. donovani (PDB code, 1QB7) as the 
template. Ribbon diagram show the overlap of the L. donovani APRT monomer (blue) and L. sordida APRT 
monomer (yellow). Adenine, amino acid residues involved in the adenine binding of L. sordida (22-Val-Phe-
Leu-24) and L. donovani (40-Arg-Phe-Ala-42) APRT are shown in red, green and orange, respectively. Distance 
between adenine and the carbonyl group is in angstroms. Schematic representation of putative adenine binding 
site of L. donovani APRT contacts to AMP (B) and AICAR (C). Schematic representation of putative adenine 
binding site of L. sordida APRT contacts to AMP (D) and AICAR (E).
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binding motif, 133-Ala-Thr-Gly-Gly-Ser-137 (Supplementary Fig. 3D). Although the side chain of Arg-139 was 
not facing the direction of the active site, its strong basicity might affect the conformation of active site. In the 
amino acid positions of 12, 34, 48, 53, 100, 165 and 167, residues were not conserved between fairy-ring forming 
fungi and other organisms (Fig. 4). In fairy ring-forming fungi, the position 53 in the missing region was substi-
tuted with a polar amino acid (Thr-53 in L. sordida or Arg-53 in P. involutes). The amino acid positioned at residue 
165 was located above the active-site and might be involved in the attraction of the substrate.

In conclusion, we provided evidence of AHX biosynthetic pathway in L. sordida; 1) feeding of AICAR in 
L. sordida mycelia culture increased AHX accumulation and gene expression level of APRT, 2) APRTs among 
mushroom-forming fungi had evolutionarily conserved domains in active site, 3) L. sordida mycelia had an 
enzyme activity for conversion of AICAR to AICA. It will take some time to mine all genes involved in the 
biosynthesis of AHX and AOH. However, this study disclosed further metabolism of AICA which is a com-
mon member of the purine metabolic pathway in animals, plants, and microorganisms, whose metabolism had 
remained elusive.

Methods
Strain and culture condition. Lepista sordida provided from Nasu Biofarm, Ltd. (Japan) was pre-cultured 
in PYG medium (0.3% polypepton, 0.3% yeast extract, 1% glucose) supplemented with 1.8% of agar to obtain 
actively growing mycelia. The inoculated mycelia were incubated at 25 °C for 3 weeks under dark condition. After 
growth, the strain on the medium was stored at 4 °C. The mycelia were used within two months for following 
experiments below.

For preparation of genomic DNA, the strain was grown in YG medium (1% glucose, 0.3% yeast extract, 
3.7 mM KH2PO4 and 3.5 mM Na2HPO4) in a flask with 120 rpm in dark condition. The culture was performed at 
25 °C for 2 weeks. The mycelia were collected by filtration through 0.2 μ m-membrane filter (Advantec Toyo Co., 
Japan).

For the feeding experiment and gene expression analysis, 8.5-mm-diameter of gel disks were punched out 
from the growing edge of mycelium. Two disks were each placed into a 50 mL Erlenmeyer flask containing 10 mL 
of YG medium. After incubation of the flasks at 25 °C for 12 days, 100 μ L of 10 mM AICAR was added to the 
cultures, and then further incubated for 12, 24, 36, and 48 h. Cultured mycelia was prepared with five biological 
replicates.

RP-HPLC analysis. Amounts of AICAR and AHX in mycelia culture were determined by reversed-phase 
high-performance liquid chromatography (RP-HPLC). After feeding of AICAR to mycelia culture, 20 mL of 
methanol and 100 μ L of 10 mM allopurinol (internal standard, final concentration 100 μ M) were added to all of 
the samples. Then the cultures were homogenized by Polytron PT 1200E homogenizer (Kinematica, Switzerland) 
for 1 min. The cell suspensions were extracted with 20 mL of MeOH and filtrated. Each MeOH extract was dried 
at 35 °C by a rotary evaporator and re-dissolved in 10 mL of 10 mM ammonium formate buffer (pH 4.0), and then 
subjected to RP-HPLC. RP-HPLC was carried out to quantify AICAR and AHX under the following conditions: 
a PU-2089 gradient pump, AS-2010 multi wavelength detector, AS-2055 plus autosampler (JASCO Co., Japan); 
column, CAPCELL PAK ADME (4.6 mm ×  250 mm; Shiseido Co., Japan); mobile phase, solution A: acetonitrile, 
solution B: 10 mM ammonium formate buffer (pH 4.0), 0–10 min, 2% Solution A; 10–40 min, 2–50% sol. A; flow 
rate,1 mL/min; and UV wavelength, 250 nm.

Detection of AICA by LC-MS/MS Analysis. AICAR-converting activity to AICA in crude enzyme extract 
of the mycelia was tested by LC-MS/MS analysis. The mycelia were frozen in liquid nitrogen and ground to a 
powder with a motor and pestle. The mycelia powder was extracted with extraction buffer containing 100 mM 
Tris-HCl (pH 8.3), 0.2% (w/v) 3-(3-cholamidepropyl) dimethylammonio-1-propanesulphonate, 10% (v/v) glyc-
erol, 1 mM phenylmethylsulfonyl fluoride and 20 mM 2- mercaptoethanol at 4 °C for 3 h with shaking. The extract 
was centrifuged at 10,000 g for 20 min, and the supernatant was desalted by Centrifugal ultrafiltration using 
Amicon Ultra Centrifugal Filter Devices (3,000-Da cutoff; MerkMillipore, Japan). Ultrafiltration was repeated 
3 times by adding fresh 100 mM Tris–HCl buffer (pH 8.3). After adding AICAR (final concentration 0.2 mM) to 
desalted crude extract, the sample was incubated at 28 °C for 8 h and subjected to LC-MS/MS analysis. AICA in 
the sample was detected on LC-MS/MS by comparing the retention time and precursor ion with those of authen-
tic one. Analyses were performed with a Shimadzu UPLC system (Shimadzu, Japan) coupled to an LTQ Orbitrap 
mass spectrometer (Thermo Fisher Scientific, Waltham, MA, USA) equipped with an electrospray ionization 
probe. A PC-HILIC column (φ  2 ×  100 mm, 3 μ m; Shiseido, Japan) was used in the analysis (injection volume, 
10 μ L; solvent, 95% MeOH with 0.05% formic acid; flow rate; 0.2 mL/min). After each analysis, the column was 
re-equilibrated for 10 min at the initial conditions prior to the next sample analysis. MS analysis was performed 
in the negative FTMS mode at a resolution of 30,000 at m/z 400 with the following source parameters: sheath gas 
flow, 50; auxiliary gas flow rate, 10; tube lens, − 63 V; capillary voltage, − 16 V; ion spray voltage, 3 kV.

DNA preparation. The mycelia were frozen in liquid nitrogen and powdered with a motor and pestle. The 
powdered sample was used for extracting genomic DNA by using DNeasy Plant Mini Kit (Qiagen, Germany) 
following the instruction manual. Obtained DNA was quantified by using PicoGreen dsDNA Quantification 
Reagent (Invitrogen, USA) and analyzed on 0.7% of agarose electrophoresis to check the quality. The collected 
genomic DNA was used for genomic library construction.

Sequencing by Illumina/GAIIx. Two genomic DNA libraries for paired-end (PE) sequencing and 
mate paired-end (MP) sequencing were constructed by using Truseq DNA sample preparation kit and Mate 
pair library sample preparation kit, respectively, following the instruction manuals (Illumina, USA). For PE 
sequencing, 1 μ g of genomic DNA was fragmented and electrophoresized on 2% of agarose to collect a DNA 
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fraction of approx. 300 bp length. For MP sequencing, 10 μ g of genomic DNA was fragmented and conducted to 
end-repaired. Subsequently, the 3′  ends of the DNA fragments were biotinylated by incorporating labeled dNTPs 
and electrophoresized on 0.6% of certified megabase agarose gel (Bio-Rad Laboratories Inc, USA) to collect a 
DNA fraction of approx. 3 kb length. DNA fragments in the fraction were circulated and then fragmented into 
350–650 bp length. The biotinylated DNA was purified by using Dynabeads M-280 Streptavidin Magnetic Beads 
(Life Technologies, USA).

Each genomic DNA library was made blunt ended with End Repair Enzyme (Illumina) in the presence of 
2.5 mM dNTPs and 10 mM ATP. Adenine nucleotide was added to the 3′  ends of the blunt ended cDNA with 
Klenow fragment (3′  to 5′  exominus) in the presence of 1 mM dATP by incubating at 37 °C for 30 minutes. The 
DNA with adenine on its ends was ligated with adapters provided by Illumina (PE; TruSeq Universal Adapter 
and TruSeq Indexed Adapter, MP; paired end (PE) oligo adapters) using T4 DNA ligase at room temperature 
for 15 min. The DNA was amplified with two adapter primers (Illumina) (PE; TruSeq Universal Adapter primer, 
and IlluminaTruSeq Adapter primer, MP; PE primers 1.0 and 2.0) with initial denaturing step at 98 °C for 30 s, 
followed by 15 cycles at 98 °C for 10 s, 65 °C for 30 s, 72 °C for 30 s with a final extension cycle at 72 °C for 5 min. 
The PCR products were purified with Qiaquick PCR purification kit and gel-extracted.

Whole genome sequencing using Illumina Genome Analyzer GAIIx (Illumina) was carried out by the method 
of 100 bp of paired-end. One lane for each library was used.

Sequencing by Roche/GS FLX Titanium. A paired-end genomic DNA library 8 K and a fragment 
genomic DNA library were constructed to be sequenced by GS FLX Titanium in Dragon Genomics Center 
(Takara Bio Inc., Japan). Construction of the paired-end library was conducted following the method described 
in GS FLX Paired End DNA Library Preparation Method Manual (provided from Roche Diagnostics K. K. Japan). 
Ten μ g of the genomic DNA was mechanically digested by HydroShear (Digilab, USA) into approx. 8 kb of DNA 
fragments. The both termini of the DNAs were blunted and ligated with an adaptor with biotinated loxP site for 
cyclizing them. The DNA fraction was separated by agarose electrophoresis, and DNA fragments of 6.5 to 9.5 kb 
were eluted from the agarose gel by using the Elutrap Electroelution System (GE Healthcare, Japan). Obtained 
DNAs were circulated by a reaction of Cre Recombinase. The DNAs were then conducted to fragmentation by an 
Acoustic Solubilizer (Covaris, USA) and blunting the termini. After binding the DNAs to streptavidin-coupled 
dynabeads by using the affinity with biotin, the collected DNAs were ligated with the Library Adapters provided 
by the manufacture (Roche Diagnostics K. K.). The DNAs were amplified by PCR at 20 cycles by using a bioti-
nated Amplification Primers (Roche Diagnostics K. K.) to purify the biotinated PCR products. Pool of dena-
tured PCR products in alkaline treatment was designated as the paired-end library. For the fragment genomic 
DNA library, GS FLX Titanium Rapid Library Preparation Kit (Roche Diagnostics K. K.) was used following 
the manufacture’s manual. Briefly, one μ g of the genomic DNAs was fragmentized by using Covaris S-series 
(Covaris, Inc., USA) and then ligated with RL adaptor included in GS FLX Titanium Rapid Library Preparation 
kit (Roche Diagnostics K. K.). From the DNA fraction, short DNAs were excluded by using Agencourt AMPure 
XP (Beckman Coulter, Inc., Brea, USA), and the resultant was designated as the sequence library.

Each sequence library was conducted to emulsion PCR after binding with capture beads. The capture beads 
were applied to sequencing by Genome Sequencer FLX +  System.

Preprocessing of sequence reads. Raw sequence data of the Illumina sequence data were subjected to 
trimming and quality filtering were done with an in house Perl script. Low-quality bases at the sequence read ends 
with the quality value <  10 in fastq files were trimmed. Low-quality reads with either of the following criteria, 
read length <  20 bp, average of quality score per read <  17, number of low-quality bases (quality value <  10) per 
read >  10% or N’s per read  >  0%, were removed.

Raw sequence data of the GS FLX sequence were processed by using the sff_extract software 0.3.0 (http://
bioinf.comav.upv.es/sff_extract/index.html) to trim the adapter sequences.

De novo assembly. Sequence reads derived from GAIIx and GS FLX Titanium were conducted to hybrid 
assembly by multi-step procedures. The sequence reads from GS FLX Titanium were assembled into contigs by 
Newbler43, and then the contigs were further integrated with Illumina mate pair short reads to generate genomic 
scaffolds by SSPACE44. At final, Illumina pair end reads were used to fill an indefinite nucleotide “N” in the 
genomic scaffolds by Gap closer45.

Sequence search. HMMER (ver. 3.1) was applied to search an APRT gene sequence in L. sordida46. Query 
sequence was conducted to nhmmer search against the whole genome assembly in L. sordida with the default 
setting.

cDNA cloning of APRT in L. sordida. RT-PCR was performed with PrimeScriptTM RT-PCR kit (TaKaRa 
Bio Inc., Japan). Total RNA was prepared by using RNeasy plant mini kit (Qiagen) and applied to 1st-stranded 
cDNA synthesis with oligo (dT) primer and a PrimeScript RT reagent kit (TaKaRa Bio Inc.). A pair of primers 
(5′-ATGGACGTTGAGTACATTAAAG-3′  and 5′ -TCAATCATCCGATTGAACGATC-3′ ) were designed based 
on predicted nucleotide sequence of APRT gene and employed for PCR. Amplified PCR product was purified and 
cloned in a vector pMD20-T (TaKaRa Bio Inc.) using a Mighty TA cloning kit (TaKaRa Bio Inc.).

Structural analysis of APRT protein. Multiple alignment of APRT was prepared using the ClustalX soft-
ware (Thompson et al., 1997). The secondary structure of the L. sordida APRT was predicted by PSIPRED v3.3 on 
the PSIPRED server47. We predicted a protein structure of APRT in L. sordida using the Swiss-Model automated 
protein structure homology-modeling server with the template of the APRT in Saccharomyces cerevisiae (Protein 
data bank code, 1G2Q)48. Individual hydrophobicity was determined using the Protscale software at the EXPASY 

http://bioinf.comav.upv.es/sff_extract/index.html
http://bioinf.comav.upv.es/sff_extract/index.html
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server (Gasteiger et al. 2005), with the amino acids scale of “Hphob/Kyte and Doolittle”49. Distance between 
adenine and the carbonyl group in the homology model was calculated with Pymol (https://www.pymol.org/).

Quantitative gene expression analysis. Gene expression analysis was carried out using quantitative 
real-time RT-PCR (qRT-RT-PCR). qRT-RT-PCR was performed in 96-well plates with a LightCycler 480 real-time 
PCR instrument (Roche Diagnostics K. K.). One microgram of total RNA samples was incubated with 1 U deoxyri-
bonuclease I (Invitrogen, USA) for 15 min at room temperature to remove genomic DNA, and EDTA was added to 
a final concentration of 2 mM to stop the reaction. After that, 1st-strand cDNAs were synthesized from total RNAs 
using a PrimeScript RT reagent kit (TaKaRa Bio Inc.) with oligo (dT) primer. Each 20 μ L reaction mixture con-
taining 50 ng of total cDNA, 10 μ L FastStart Essential DNA Green Master (Roche Diagnostics K. K.), and 0.5 μ M  
of each primer. Cycling conditions was set as follows: pre-incubation, 1 cycle of 95 °C for 10 min; amplification, 45 
cycles of 95 °C for 10 s, 57 °C for 10 s and 72 °C for 10 s. The following primers were used: APRT forward primer, 
5′ -CTCCTCGGTCCAATAATCGC-3′ ; APRT reverse primer, 5′ -AAATATGTCCACACCGTATTC-3′ ; AICARFT 
forward primer, 5′ -CAAGATTGACGCTAAGCTCTTCGAG-3′ ; AICARFT reverse primer, 5′ - GTGGCGACGATT 
AAGTCTGTAATTG. Gene expression levels were normalized by gene expression of an actin; primers 5′ -CGTTGTT 
TGCGGTCG-3′  and 5′ -GCTAAAATATCTTTG-3′  were designed.
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