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Abstract 

This thesis concerns the detection of decompression induced gas bubbles in the flowing 

blood. Gas bubbles are a major clinical issue often encountered in the pneumatic caisson, 

flying, scuba diving and medical fields. Presenting a significant health hazard, these gas 

bubbles could occlude blood vessels and thereby prevent the normal flow of blood to 

surrounding tissue and vital organs. As a result, it can lead to momentary neurological 

deficits up to heart attack and stroke. It is believed that detecting the gas bubbles in the 

early stage could prevent or reduce the gas bubbles associated risks. The signal analyzed 

in this thesis is collected targeting the pulmonary artery of caisson workers who are 

infected due to decompression; using the pulsed Doppler ultrasound system. Doppler 

ultrasound signal is graded from low to high. Some simple algorithms are required to 

the detection of gas bubbles for low graded Doppler ultrasound signal. However gas 

bubble detection is challenging if the signal belongs to high grade. In this thesis gas 

bubble detection is carried out for low graded Doppler ultrasound signal as well as high 

graded Doppler ultrasound signal. 

This signal is decomposed into its individual embedded modes called intrinsic 

mode functions (IMF) with the empirical mode decomposition (EMD) method. Then 

discrete Hilbert transform (DHT) is applied to the disintegrated intrinsic mode functions 

(IMF) subsequently to generate the three time-dependent instantaneous components- 
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frequency, Hilbert amplitude and phase. The EMD combined with DHT constitutes the 

Hilbert spectrum (HS) which is a fine-resolution time-frequency-energy representation 

of a non-stationary signal. Therefore, the HS is generated from the normalized 

instantaneous frequencies and weighted sum of instantaneous amplitudes of the IMFs at 

the frequency bins. A new representation and interpretation of Doppler ultrasound signal 

is given to the time-frequency-energy distribution using HS. In the new representation 

of HS, a search area with parabolic outline is found within which it is expected that the 

systolic phase and the gas bubble signal exists. This search area appears clearly due to 

the strength of the systolic phase and the gas bubble signal. The systolic phase is 

detected by deriving the ratio between high frequency components and low frequency 

components and using the instantaneous phase through the reconstruction of the signal. 

Detecting systolic phase or peak systole could provide the cardiac rate variability as 

well as tentative location of the gas bubble signal. Then, systolic phase detection 

performance is evaluated in terms of sensitivity and positive predictivity. More 

processing steps are required to isolate the gas bubble signal.  

In the next step, time-varying mean frequency domain and IMF-based time 

domain analysis of Doppler ultrasound signal is employed to extract the gas bubble 

signal. This time-varying mean frequency is derived using the instantaneous frequency 

(IF) and the instantaneous amplitude, which is a very useful curve. Some smooth rising 
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trends or segments are figured out in this curve which could belong to the gas bubble 

signal. These segments are examined to see if their proximity to the gas bubble signal 

characteristics is compatible. At first the segments are extracted by applying the 

ascending slope tracing algorithm on the basis of segments amplitude, average slope 

and the deflection width. In addition, these segments corresponding sections in the 

IMFs are extracted and combined. A number of features or parameters are defined for 

the segments in time-varying mean frequency domain. Similarly, another set of 

parameters are defined for the segments in IMF-based time domain. Taking into account 

the gas bubble signal characteristics, thresholds are determined from all the segments. 

Utilizing these thresholds and the parameter values, a set of fuzzy logic based rules are 

proposed for each of the parameters. Consequently membership values are determined 

for all the parameters of a segment. Then average membership value is calculated from 

the membership values. Three kinds of detection results are illustrated, “detected”, 

“detected with poor accuracy” and “not detected”, on the basis of the average 

membership value. The proposed algorithm is applied to a subset of the available 

database and appears to perform with good sensitivity even when the gas bubble signal 

has variable signal strength and duration. 
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CHAPTER 1 

Introduction to decompression induced gas bubble 

1.1 Introduction 

An embolus is defined as an abnormal particle entrained within the bloodstream [1]. An 

embolus could be a gas bubble [2], a fat globule [3], a blood clot, tumor tissue, platelet 

aggregate, an athermanous plaque or a piece of a thrombus [4][5][6].  The plural of 

embolus is emboli. A single or multiple emboli can result in a sudden interruption of 

blood flow to an organ or body part is called embolism. Important variations are found 

in the nature, the size and the number of emboli on the basis of clinical situation. 

Obstruction of a blood vessel could be caused by either a large gas bubble or a set of 

small gas bubble. A moving gas bubble in the blood vessel is shown in Fig. 1.1. 

 

 

 

 

Fig. 1.1: A moving gas bubble in the blood vessel 

1.2 Sources of gas bubble 

Gas bubble or embolus is reported in a wide variety of clinical fields. The two most 

common sources for gas bubbles are as a result of a medical procedure and through 
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environmental decompression [7]. Gas bubbles concerning medical procedures are not 

discussed in this research. Environmental decompression is observed while carrying out 

construction, maintenance or other works in the pneumatic caisson, flying and scuba 

diving. Pneumatic caisson is used during the construction work such as foundation work, 

i. e., basements and shafts of the bottom tunnel or shields for subway and so forth [8]. A 

simple diagram of a pneumatic caisson is illustrated in Fig. 1.2. 

 

 

 

 

 

 

 

 

 

 

Fig. 1.2: A simple diagram of a pneumatic caisson 

In this system, the workers are exposed to hyperbaric environments where 

compressed air is maintained, even though this system has risks to be suffered from not 
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only decompression sickness but also poisonous gas toxicity or organ deficiency. 

However, this caisson work is considered as a better technique for such high pressure 

works, even though the workers must be exposed to hyperbaric working environments 

for maintenance or repair of machineries and materials. 

In this system, mixed gas of oxygen, helium and nitrogen (Trimix) is used for 

breathing through masks instead of air at the bottom working fields. Unlike oxygen, 

nitrogen and helium is a biologically inert gas, meaning that it is not converted into 

other substances by the body. For this reason, most of the nitrogen we inhale is expelled 

when we exhale, but some is dissolved into the blood and other tissues. During the 

construction work, however, the lungs take in more nitrogen than usual. This happens 

because the surrounding pressure is greater than air pressure at sea level. When the 

environmental pressure decreases by surfacing, the gas that is absorbed in tissue 

becomes gas bubbles and is evacuated out of body through several paths. If the 

generation speed of the bubbles is slower than the evacuation speed, there is no problem. 

In rapid surfacing, however, the generation speed is increased above that of evacuation 

and the bubbles remaining in the body could block small vessels or compress nerves, 

and result in various functional disorders. Such disorders are called decompression 

disorders or caisson disease. Caisson disease is named after the caissons or large 

underwater chambers in which underwater construction workers often worked. During 



4 

 

decompression bubbles are present in varying quantities. Large quantities of bubbles are 

believed to be harmful to the body and are generally considered the initiating factor for 

decompression sickness. The risk of developing decompression sickness is correlated 

with gas bubble grades. 

1.3 Disease due to gas bubble 

A number of terms are used to describe the decompression disorders. Decompression 

sickness, decompression illness, decompression injury, bends and caisson disease are all 

used to describe the same condition. 

1.3.1 Decompression sickness of the nervous system 

The clinical features are due to disturbance of activity in the nervous system, interfering 

with one or more of its five principal functions and could originate from the central, 

peripheral or autonomous nervous systems [9]. The symptoms appear a short time after 

the event that has led to the formation of gas bubbles. The neural status shows mostly 

multifocal lesions, and if the brain is affected, confusion, vertigo, unconsciousness, and 

disturbances of vision are preeminent. Disturbances of motility and of sensation and 

paralyses, including disturbances of micturition, are symptoms of damage to the spinal 

cord. Damage to the inner ear is indicated by some features such as ringing noises in the 

ears (tinnitus), loss of hearing, vertigo and vomiting. The increase of concentration in 

high pressure air increases the tracheal resistance and in the worst case gas bubbles are 
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carried by the systemic circulation to the lungs, pulmonary symptoms ensue 

facultatively, with dyspnea, cyanosis, pain in the chest upon breathing and somewhat 

bloody expectoration.  

1.3.2 Decompression sickness of the skin, muscles, bones and joints 

The cause of this decompression sickness is the presence of gas bubbles in the organs as 

a consequence of inadequate decompression. The exact location of these gas bubbles 

and the mechanisms causing pain are not very clear. Decompression sickness of the skin 

exhibits itself with itching, red spots, and swellings. Stiffness of the muscles and 

soreness after sudden and protracted exercise indicates damage to the muscles. 

Symptoms due to decompression sickness of the joints are often found around a joint. 

Symptoms could begin with discomfort or an abnormal feeling in or near the joint. Over 

the next hour or two, pain and other symptoms could be developed. In comparison with 

the central nervous system, the bones and joints require little blood and the equalization 

of blood with that of the insert gas occurs very slowly. This is why the sickness affects 

the professional caisson workers adversely, who are exposed to overpressures for hours 

or even days.  
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1.3.3 Pulmonary decompression sickness 

Pulmonary decompression sickness is another condition. The small vessels of the lungs 

could be trapped due to the formation of large number of gas bubbles. If excessive 

bubbles are formed, this leads to a disturbance of lung function and a feeling of 

breathlessness, known as the “chokes” [10]. Chokes are characterized by the triad of 

substernal pain, cough, and dyspnea, are considered to be associated with severe 

accumulation of gas bubbles and could rapidly develop into a life-threatening medical 

emergency [9]. 

1.4 Spencer code 

The most common method for identification of bubbles in Doppler signals by listening 

and estimating the number of bubble signals according to some classification scheme. 

The Spencer code, proposed by M.P. Spencer is the first standard code for classifying 

gas bubbles [11]. He developed a scale to describe the rate and size of gas bubbles. It is 

illustrated in Table 1.1. 
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Table 1.1: Spencer code for gas bubble signals 

Grade Description 

0 There is no gas bubble in the bloodstream  

I Occasional gas bubbles are detected and most of the cardiac periods 

are free from gas bubbles 

II Less than half of the cardiac periods contain single or multiple gas 

bubble signals in group 

III Most of the cardiac periods contain single or multiple gas bubble 

signals in group provided that the cardiac motion signal is still 

audible. 

IV The maximum detectable gas bubble signals sounding continuously 

throughout the every cardiac periods and overriding the amplitude 

of the cardiac motion signals.   

1.5 Doppler ultrasound systems 

The Doppler ultrasonic flowmeter is the simplest application of ultrasound for bubble 

detection. Doppler ultrasound is based on the shift of frequency in an ultrasound wave 

caused by a moving reflector, such as gas bubble or blood cell [12]. Reflected 

ultrasound waves are shifted in frequency proportionally to the velocity of a moving 
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reflector. This change in frequency is called the Doppler shift, and is given by 

 ∆𝑓 =
2 𝑓𝑣 𝑐𝑜𝑠𝜃

𝑐
,                                                (1.1) 

where 𝑓 is the frequency of the transmitted signal, v is the velocity of the reflector, 𝜃 

is the angle between the transmitted signal and the direction of the moving reflector and 

c is the sound velocity. It is illustrated in Fig. 1.3. 

 

 

 

 

 

 

 

Fig. 1.3: Doppler ultrasound signal reflection into blood vessel 

The Doppler shift typically falls in the audible range 0-10 kHz and is simply 

used as audible output. So the output Doppler signal is a sound with frequency 

proportional to the velocity of the reflectors and amplitude according to their acoustic 

properties. Reflections from stationary structures will not have a Doppler shift and will 

thus not be heard in the output signal. Any gas bubble moving with the blood flow will 

give very strong reflections that could be distinguished from the low amplitude flow 

Red blood cells 
Ultrasound direction 

Skin surface 

Doppler transducer 

Blood vessel 

ᶿ 



9 

 

signal from blood cells.  

Doppler ultrasound systems can be either continuous wave (CW) or pulsed wave 

(PW) [13]. In a CW system there are two transducers; one continuously transmitting 

ultrasound waves and one continuously receiving reflections. An oscillator generates a 

resonant frequency to drive the transmit transducer and provides the same frequency 

signal to the demodulator, which compares the returning frequency to the incident 

frequency. The receiver amplifies the returning signal and extracts the residual 

information containing the Doppler shift frequency by using a low-pass filter. CW 

systems are technically simpler and cheaper than PW systems, and also easier to use. 

They are therefore the most commonly used for the detection of gas bubbles. However, 

CW Doppler suffers from depth selectivity with accuracy affected by object motion 

within the beam path.  

A PW Doppler system comprises a single transducer which emits short bursts of 

ultrasound and then “listens” for echoes. As the sound velocity in the tissue is known, 

one can define the depth from which to receive echoes by adjusting the time delay from 

transmission to reception and the duration of reception. Thus, PW Doppler systems have 

depth resolution which can improve the signal to noise ratio. It can be considered a 

depth-selective version of CW Doppler, returning information about the depth of 

reflectors in addition to their size and velocity. However, if the sample volume is not 
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optimally adjusted, part of the blood flow will be lost. Fig. 1.4 illustrates a simple block 

diagram of the pulsed Doppler ultrasound system.  

 

 

 

 

 

 

 

 

Fig. 1.4: Block diagram of a pulsed Doppler ultrasound system 
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determine the Doppler shift, but only a sample of the shifted frequencies measured as a 

phase change. Stationary objects within the sample volume do not generate a phase 

change in the returning echo when compared to the oscillator phase, but a moving 

object does. Repeated echoes from the active gate are analyzed in the sample and hold 

circuit, and a Doppler signal is gradually built up. 

Most ultrasonic scanners used for 2-dimensional imaging also have both CW 

and PW Doppler functions for blood flow measurements. This enables the operator to 
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easily find an optimal position for the Doppler signal and to avoid fast moving 

structures like valve cusps. Ultrasound scanners are, however, expensive and complex 

pieces of equipment and their use has so far been limited to laboratory experiments. 

1.6 Experimental setup 

A pulsed wave (PW) Doppler system comprises a single transducer which emits short 

bursts of ultrasound and then “listens” from echoes. In our research, a PW Doppler 

system having 2 MHz carrier frequency is used. Doppler ultrasound signal is radiated 

targeting the pulmonary artery and the reflected signal is received. The reflected signal 

is a sound with frequency proportional to the velocity of the reflectors and amplitude 

according to their acoustic properties. Reflections from moving objects (blood, gas 

bubble) will have a Doppler shift and will be found in the output signal and the Doppler 

signal is obtained by bandpass filtering through hardware.  
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1.7 Organization of the thesis 

This opening chapter serves as an introduction to gas bubble, how gas bubble forms in 

the blood vessel, different disease due to gas bubble, gas bubble classification scheme, 

and Doppler ultrasound systems for the detection of gas bubbles. Below is an 

organization of the thesis in chapter-by-chapter basis. 

Chapter 2 

A comprehensive review of the gas bubble detection approaches are discussed in this 

chapter. Different types of gas bubble detection methods, their usefulness, effectiveness, 

and limitations are also discussed. 

Chapter 3 

Systolic phase detection approach based on EMD, DHT and HS is discussed in this 

chapter. How systolic phase detection is playing a vital role to the detection of gas 

bubble signal is discussed in the chapter. Some experimental results for the detection of 

systolic phase are given. In addition to this, decomposing a Doppler ultrasound signal 

into IMFs using EMD, determination of IF, instantaneous amplitude and instantaneous 

phase by DHT, and derivation of HS and a new representation of HS is given in the 

chapter. 
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Chapter 4 

Derivation of time-varying mean frequency from instantaneous frequency and 

instantaneous amplitude is given in this chapter. An algorithm is proposed in this 

chapter for extracting the segments from the time-varying mean frequency. These 

segments are representing either gas bubble signal or other similar events. 

Chapter 5 

The segments extracted in the previous chapter are used in this chapter to define some 

parameters in time-varying mean frequency domain. In addition to this, some 

parameters are defined in time domain using IMFs. The segment representing gas 

bubble or not is determined on the basis of these parameters. 

Chapter 6 

Having obtained all the parameters in time-varying mean frequency and time domain, 

an algorithm based on fuzzy logic rule is applied for the purpose of gas bubble 

detection.  

Chapter 7 

This chapter summarizes the main conclusions of this thesis and provides some 

suggestions for further research. 
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CHAPTER 2 

Literature review 

2.1 Focus of the past and current research 

Studies of embolic signal have mainly focused on the detection and discrimination 

using various methods and signal processing approaches. The earliest method of 

detection, which is still currently the gold standard, is that involving human experts. 

Automatic detection algorithms that have been developed operate either in the time 

domain or employ spectral techniques. Time domain based methods have used signal 

properties such as magnitude and instantaneous frequency of the signal. Spectral 

methods have allowed utilization of signal properties like intensity and frequency to 

distinguish between background and the embolic signal. Extensive research was carried 

out for the analysis of embolic signals. In the following sections, some well-known and 

effective methods are discussed. 

2.1.1 FFT-based methods 

Emmanuel Roy, Silvio Montresor, Pierre Abraham, and Jean-Louis Saumet presented a 

time-frequency representation based on the spectrogram to perform automatically the 

detection of circulating embolus [14]. The method used the narrow band hypothesis and 

extracted two characteristic functions from the time-frequency (TF) representation, the 

root-mean of the local power spectrum (RMPS) and the modal frequency (the frequency 
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for which the peak spectral power is maximum) for the detection of embolic signals. 

This method employed STFT for TF representation of the embolic signal. The 

representation efficiency depends on many factors including the number of FFT points, 

window function and amount of overlapping. Moreover, STFT introduces a remarkable 

amount of cross-spectral terms between the time frames. In addition to this, authors 

specified that their Doppler signals were less complex than those found in clinical 

practice, and that their results were valid only for their simulated signals used. In 

another paper, Emmanuel Roy, Pierre Abraham, Silvio Montresor, and Jean-Louis 

Saumet investigated the performance of different time-frequency distributions (TFD) to 

detect high-intensity transient signals and concluded that smoothed-pseudo-wigner-ville 

distribution (SPWVD) provided better results than Choi-williams distribution (CWD) 

and cone-kernel distribution (CKD) [15]. However, the SPWVD, the CWD and the 

CKD was implemented using FFT. The limitations of such FFT based methods are well 

known: conflict between time and frequency resolution.  

K. Kisman was able to use the FFT to obtain good gas bubble detection rates 

with Doppler probes implanted directly adjacent to the vein of interest, thereby 

minimizing the presence of artifacts in the signal [16]. While this work showed that 

automatic detection of gas bubble was possible, the highly idealized experiment 

involved invasive procedures and the processing of a signal with virtually no artifacts, 
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neither of which is applicable to my case. 

H. Markus, M. Cullinane, and G. Reid used the conventional FFT in an online 

program to detect emboli from trans-cranial Doppler measures [17]. This program was 

shown to perform about as well as a panel of human experts [18]. However, this signal 

has very low background noise, which makes the detection of embolic signal very easy.  

2.1.2 Wavelet-based methods 

The wavelet transform is being increasingly applied, in the fields ranging from 

communications to medicine, to analyze signals with transient or nonstationary 

components. Nonstationary means that the frequency content of the signal could change 

over time and the onset of changes in the signal cannot be predicted in advance. Gas 

bubble signals, which are transient like and of very short duration, fit the definition of 

nonstationary signals. 

Nizamettin Aydin, Soundrie Padayachee and Hugh S. Markus described the 

embolic signals by the use of continuous wavelet transform (CWT) [19]. The CWT is 

the ideal method for the detection of constant-velocity (and therefore, constant 

frequency) embolic signals. However, it is observed that many embolic signals exhibit 

varying frequency content. In [20], Brian S. Krongold, Akbar M. Sayeed, Mark A. 

Moehring, James A. Ritcey, Merrill P. Spencer and Douglas L. Jones used 

time-scale-chirp (Chirp-CWT) detector to detect micro-emboli in the flowing blood 
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with Doppler ultrasound signal. The CWT (time-scale) was computed utilizing the 

chirp-z transform and fast convolution [21]. The time-scale-chirp detector used the same 

CWT for nine different chirp rates, and the generalized likelihood-ratio test (GLRT) 

search was done over this parameter space. 

Nizamettin Aydin, Farokh Marvasti and Hugh S. Markus used the discrete 

wavelet transform (DWT) to analyze the transcranial Doppler audio signals [22]. These 

signals were decomposed into a number of frequency bands using DWT. From the 

experimental result, it was found that almost all gas bubble signals are represented at the 

first four scales. One drawback of using DWT to the representation of gas bubble signal 

is the reduced frequency resolution at lower scales, in which gas bubble signal are found 

mostly. Unfortunately, the DWT produces the good resolution in the low frequency and 

the poor resolution in the high frequency. This conflicting property prevents the exact 

representation of Doppler ultrasound signals both in high frequency and low frequency 

band. In this research, very short samples of gas bubble signals, Doppler speckles and 

artifacts were used. Each sample contained one feature in isolation – an artifact, 

Doppler speckle, or an embolic signal. Their algorithm was able to correctly classify the 

vast majority of 300 such samples. However, artifacts contaminated gas bubble signals 

and Doppler speckles dominated gas bubble signals were not taken into account in their 

research. Occasionally, the signals used in the research could be found in the human 
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body. 

Ping-Wing Lui, Brent C. B. Chan, Francis H. Y. Chan, Paul W. F. Poon, Hsin 

Wang, and F. K. Lam carried out an experiment on seven dogs for the detection of 

venous emboli using DWT [23]. The experiment is performed in two phases. 10 minutes 

gap was taken between the phases. In the first phase, a series of emboli (0.01, 0.02, 0.05, 

0.07, 0.1, 0.15, 0.2, 0.3, 0.4, and 0.8mL) are injected into the external jugular vein 

through the catheter. Emboli are injected by using a micro-syringe (Hamilton, Reno, 

NV) at intervals of 2-5 minutes. Then in the second phase, a series of larger emboli (0.8, 

1.6, 2.4, 4.8, and 9.6 mL) was injected at various controlled rates of 0.011-0.128 

𝑚𝐿 ∙ 𝑘𝑔−1 ∙ 𝑚𝑖𝑛−1 over 5 minutes by using a precalibrated syringe pump (Model 

PSK-01; Nikkiso Co. Ltd., Tokyo, Japan). The emboli used in this experiment are very 

large in size with respect to the emboli found in human body. The method used in the 

detection of emboli was found useful. However, the algorithm is not properly applicable 

to the small emboli detection in the human body due to the difference in nature between 

the small emboli and the larger emboli. On the other hand, the signals taken from dogs 

were analyzed by DWT. Signal power was calculated from the wavelet coefficients and 

emboli were detected by the use of predefined threshold on the signal power. It is very 

difficult to set a standard threshold for different kinds of signals. 
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2.1.3 EMD-based methods 

M. A. Chappell and S. J. Payne proposed an automated approach [24] for the detection 

of gas bubbles using empirical mode decomposition (EMD). In this research, gas bubble 

monitoring was performed into the pulmonary artery. This location is preferred because 

it is very close to the body surface. Another point is that it allows observing the rate of 

gas bubble production in the entire venous system, as all the returning blood from the 

body must pass through the pulmonary artery. The signal taken from pulmonary artery 

was decomposed into a series of nonstationary and band-limited components called 

intrinsic mode functions (IMFs), whose character is not predefined. Theoretically, the 

IMFs represent the effects of different physical processes in the Doppler ultrasound 

signal.  In [25], Hamilton and Tompkins proposed a robust approach for the detection 

of peaks or QRS complex, primarily to improve the detection accuracy of QRS 

complexes in ECG signals. Chappell and Payne modified Hamilton and Tompkins 

original algorithm and employed the modified algorithm to the IMFs for the detection of 

systolic phase.  The signals used to detect systolic phase are collected in a different 

arrangement to the signals used to detect QRS complexes.  This allows raising a 

question to the detection of systolic phase from Doppler ultrasound signals using the 

algorithm based on QRS complex detection algorithm. In fact, QRS complex detection 

algorithm or modification of that algorithm could be applicable to the low graded 
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Doppler ultrasound signals for the detection of systolic phase. It is illustrated in Fig. 2.1 

and Fig. 2.2. Low graded or grade-0 signal is shown in Fig. 2.1 and the systolic phase 

detection from that signal is shown in Fig. 2.2. However, for high graded Doppler 

ultrasound signals more advanced algorithm is required. In [24], the gas bubble 

detection algorithm relies upon the determination of peak systole in the cardiac cycles. 

A search region is defined between consecutive peaks of systoles within which it is 

suspected that features of gas bubble could be found. Detection of any false peak systole 

in the cardiac cycle could alter the consequences. 

In this research, a huge number of thresholds were determined for the purpose of 

gas bubble detection. In fact, it is difficult to set a threshold that excludes all the false 

events, such as those caused by blood cell movement, opening or closing of valves and 

other noise related events without excluding smaller bubbles. In that case this method is 

found to be limited. 
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Fig. 2.1: Low graded Doppler ultrasound signal 
 

 

 

Fig. 2.2: Systolic phase detection from the above low graded Doppler ultrasound signal 
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2.1.4 Parametric model based methods 

Jean-Marc Girault, Denis Kouame, Abdeldjalil Ouahabi and Frederic Patat presented an 

embolic detection methods based on parametric signal processing approaches [26]. This 

parametric model is a time-variant autoregressive (AR) model. The basic idea of this 

research is to compare the Doppler embolic signal to its autoregressive model. The 

Doppler signals containing one gas bubble or at best two gas bubbles were used in their 

experiment. However, high graded Doppler gas bubble signals were not used or could 

not be modeled in the study.  

2.1.5 LPC-based methods 

Takayoshi Nakai, Masahiro Watanabe and Hisayoshi Suzuki discovered some features 

of the gas bubble signals in the time domain and in the frequency domain, and 

developed a gas bubble detection method based on linear predictive signal processing 

[27]. The signals taken from pulmonary artery are processed in this research. In the 

signals, systolic phase is predicted by using the linear predictive analysis and it is 

removed. As the general property of the linear predictive analysis, the prediction is 

accurate for the periodic signal, resulting in smaller errors and smaller residual signal. 

By applying the linear prediction for a relatively long time, the regular component in the 

Doppler signal, which is due to the heartbeat, could be predicted for low graded Doppler 

ultrasound signals. Consequently the algorithm could be effective for the low graded 
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signal. By contrast, the prediction error or residual signal increases for the nonstationary 

signals. The signals containing gas bubbles are considered as nonstationary signals due 

to its very short duration and transient like nature. Therefore, it is very difficult to 

predict the systolic phase from the mixture of gas bubble signals and systolic phase 

signals, more specifically for high graded signals, since the gas bubble signal occurs 

irregularly and suddenly in the high graded signals. For high graded signals more 

efficient algorithm should be employed for the purpose of systolic phase detection. The 

bloodstream during the systolic phase is either a turbulent flow or close to the 

turbulence. Then, the sound of the systolic phase or peak systole could have a 

complicated spectrum similar to that of the gas bubble signal. It is observed that many 

gas bubble signals exists in the systolic phase for grades I, II and III. In that case it is 

very difficult to discriminate the signals representing gas bubbles from the systolic 

phase signals. From such a viewpoint, the systolic phase should not be removed from 

the signal. 

Once the systolic phase is removed, a two-step decision making procedure is 

applied to the signal.  A sub-segment representing the gas bubble is extracted from the 

signal based on the amplitude and the number of zero-crossings. Only these two 

parameters are inadequate for the detection of gas bubble signals. Moreover, the spectral 

peaks are determined by the linear prediction from the extracted sub-segment and the 
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approximate center of the peak frequency is determined by visual inspection, to be 

defined as the central frequency of the gas bubble signal, which is very much subjective, 

not quantitative. 

2.2 Research objectives and contributions 

Disease due to gas bubble is a significant risk to the caisson workers. A major clinical 

challenge, particularly in an emergency room, is to quickly and correctly diagnose 

patients with gas bubble and then send them on to therapy. Many research works are 

carried out to the detection of gas bubble. However, a major problem with clinical 

implementation of the systems is the lack of a reliable and efficient algorithm of gas 

bubble detection. In this study, an efficient algorithm for the detection of gas bubble 

from Doppler ultrasound signal is proposed on the basis of a two-phase processing. In 

the first phase, systolic phase is detected. In the second phase, gas bubble is detected. 

The systolic phase detection plays an important role in the field of gas bubble detection. 

By detecting the systolic phase, search regions are defined within which it is suspected 

that features of gas bubble could be found. Due to nonstationary nature of the Doppler 

ultrasound signal, it is decomposed into IMFs by using EMD. The IF, the instantaneous 

amplitude and the instantaneous phase of each real valued IMF are calculated by 

applying DHT. HS is generated to represent these IF, instantaneous amplitude and time. 

Then an improved visualization to the HS is proposed. In this improved HS, one 
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parabolic shape appears in each of the cardiac cycles within which systolic phase and 

gas bubble could be found. Systolic phase is isolated from this HS through the 

reconstruction of the signal. However, further processing is required to the detection of 

gas bubble. Therefore, in the second phase another algorithm is proposed. This HS 

based representation requires only the number of frequency bins as the input parameter 

and does not include cross-spectral term. Hence, it performs better as demonstrated by 

the experimental results. This algorithm is more effective for the detection of systolic 

phase. The main advantage of this approach is that it is valid for low graded signal as 

well as high graded signal. 

In the second phase, time-varying mean frequency is derived from the 

instantaneous amplitude and the IF. This time-varying mean frequency exhibits some 

smooth and increasing trends. It is most likely that these trends are responsible for the 

gas bubble signal or other similar events. An interesting algorithm is employed to 

extract the trends or segments. These trends are belonging to the gas bubble signal or 

other similar events.  Considering physical properties of the gas bubble signal, some 

features or parameters are derived from the segments in time-varying mean frequency 

domain. To ensure more accuracy, other parameters are derived in time domain based on 

IMFs. All these parameters are used and a decision is made to the detection of gas 

bubble on the basis of fuzzy logic rule. In most of the research works, either frequency 
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domain or time domain signal processing is carried out. In this research, to achieve 

more accuracy time-varying mean frequency domain and time domain signal processing 

is performed. 

It is envisioned here that this research should be implemented in a true on-line 

system which can operate in real time. It is believed that this research could help to 

study the clinical significance of gas bubble in the bloodstream, in more quantitative 

terms while also significantly impacting the treatment modalities and thus tremendously 

improving the patient care. 
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CHAPTER 3 

Development of an algorithm for systolic phase detection 

3.1 Systolic phase detection 

Systolic phase detection is challenging if the signal contains decompression-induced gas 

bubbles. The sequence of mechanical and electrical events that repeats with every 

heartbeat is called the cardiac cycle. A single cycle of cardiac activity can be divided 

into two basic phases – systolic and diastolic phase. It is observed that 

decompression-induced gas bubble passes through the pulmonary artery during the 

systolic phase. The formation of gas bubbles in the bloodstream are due to rapid 

changes in environmental pressure that could happen while carrying out construction 

work under water (caisson), flying or scuba diving. The bubbles remaining in the body 

could block many vessels or compress nerves and result in various functional disorders, 

including strokes and even death. Such disorders are called decompression syndromes 

(DCS) or caisson disease. The gas bubble monitoring relies upon the detection of 

individual systolic phase.  

The first aim of this study is to detect systolic phase from Doppler ultrasound 

signal. Detecting systolic phase from Doppler ultrasound signal is challenging if the 

signal belongs to high grade in terms of gas bubble detection rate. Spencer and 

Johanson in [28] defined Doppler ultrasound signal grades according to the rate of 



28 

 

bubble detection. In another study by Chappell and Payne in [29], where only two types 

of Doppler ultrasound signals are considered to detect systolic phase using EMD. 

However, the correspondence between the signals used in [29] and the signal grades 

defined by Spencer in [28] is not clear. Using EMD systolic phase can be detected from 

the electrocardiogram by the detection of QRS complex, is published in [30]. It can also 

be detected from other types of signals, e.g. cardiac output and arterial pressure signals 

are discussed in [38][39]. The detection result from different signals could be different, 

since there is a time delay in the different signal types. This is due to the fact that the 

cardiac output and arterial pressure describe the vaso-mechanical properties of the heart 

while electrocardiogram and Doppler ultrasound describe the electrical activity and 

mechanical properties respectively. 

In this chapter, an efficient algorithm is proposed for the purpose of systolic 

phase detection from the high graded Doppler ultrasound signal. In the literature, very 

often systolic phases are detected in time domain analysis. In the case of low graded 

signals, a simple time domain algorithm can be used to detect systolic phase. However, 

it cannot provide a description of how systolic phase energy evolves over time. Whereas, 

in the case of high graded signals, the analysis is not simple and identification of the 

systolic phase shape and the time when it occurs are difficult. Such an analysis is 

proposed in the current study using time-frequency-energy representation of the 
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Doppler ultrasound signal. In this study, the signal shown in Fig. 3.1 is decomposed into 

a finite number and band-limited IMFs using EMD, then the instantaneous frequency 

(IF) is derived for each component. All the IFs are scaled between 0 and 0.5 and 

multiplied by a weighting factor and the bin spacing of the HS is selected. The overall 

HS is defined as the weighted sum of the instantaneous amplitudes of all the IMFs at the 

frequency bin. Therefore a new time-frequency-energy representation is determined 

from the IMFs using HS. This new representation offers a clue to the detection of 

systolic phase. The properly detection of the systolic phase is the most important task to 

detect gas bubbles associated DCS.  

 

Fig. 3.1: Doppler ultrasound signal 
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3.2 Method of systolic phase detection 

The Hilbert spectrum (HS) is a relatively new joint time-frequency representation 

introduced in [31]. Two phases are required to generate the HS. In the first phase, EMD 

is employed, which is an adaptive decomposition method [32]. Then DHT is employed 

in the second phase. HS is generated by the combination of EMD and DHT. This is an 

adaptive analysis method, especially useful for nonlinear and non-stationary signal 

analysis. 

At a normal heart rate (80 beats per minute), a period is considered to be 0.8 

seconds. Atrial systole, ventricular systole, and diastole take approximately 0.1 second, 

0.3 seconds and 0.4 seconds respectively. One period Doppler signal must contain 4000 

samples (N) if the sampling frequency is 5000 Hz and heart rate is 80 beats per minute. 

Since heart rate of the Doppler signal during the recording time could not be at such rate, 

one period of the obtained signal could be longer or shorter than 4000 samples. 

Therefore, the sample duration considered in the study is one second and it is thought 

that within that limit there should be at best two systolic phases.  

3.2.1 EMD Basics 

Empirical mode decomposition (EMD) focuses on the level of local oscillations and 

decomposes the signal into a finite set of AM-FM oscillating components which are 

bases of the decomposition. The bases into which the signal is decomposed are obtained 
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from the signal itself, and they are defined in the time domain. The principle of the 

EMD technique is to decompose a signal s(𝑡) into a sum of the band-limited functions 

𝛼𝑚(𝑡) or bases called intrinsic mode functions (IMFs). Each IMF satisfies two basic 

conditions: (i) in the whole data set, the number of extrema and the number of zero 

crossings must be the same or differ at most by one, (ii) at any point, the mean value of 

the envelope defined by the local maxima and the envelope defined by the local minima 

is zero. The first condition is similar to the narrow-band requirement for a stationary 

Gaussian process and the second condition is a local requirement induced from the 

global one, and is necessary to ensure that the instantaneous frequency will not have 

redundant fluctuations as induced by asymmetric waveforms. 

3.2.2 Univariate EMD (uEMD) 

The univariate EMD (uEMD) is used to decompose the univariate signal into a finite set 

of IMFs. There exist many approaches of computing EMD [33]. The following 

algorithm is employed here to decompose signal s(𝑡) into a set of IMF components. 

The process of extracting an IMF from a signal is called “the sifting process”. 

1. Set 𝑢1(𝑡) = 𝑠(𝑡) , where 𝑠(𝑡)  and 𝑢1(𝑡)  represents the original signal. 

𝑢1(𝑡) is used as a temporary variable. 

2. Find the extrema (both maxima and minima) of 𝑢1(𝑡). 

3. Generate the upper and lower envelopes ℎ(𝑡)  and 𝑙(𝑡)  respectively by 
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connecting the local maxima and local minima separately with cubic spline 

interpolation (e.g., linear, spline, piece-wise spline). In this paper the linear method 

is chosen. 

4. Calculate the local mean as : 𝜇1(𝑡) = [ℎ(𝑡) + 𝑙(𝑡)]/2. 

5. IMF should have zero local mean; subtract 𝜇1(𝑡) from the original signal as: 

𝑢1(𝑡) = 𝑢1(𝑡) − 𝜇1(𝑡). 

6. Decide whether 𝑢1(𝑡) is an IMF or not by checking the two basic conditions 

as described above. 

7. Repeat steps 2 to 6 until an IMF 𝑢1(𝑡) is found. 

Once the first IMF is derived, we define 𝛼1(𝑡) = 𝑢1(𝑡), which is the smallest temporal 

scale in s(𝑡). In order to find out the rest of the IMF components, the residue 휀1(𝑡) of 

the data is generated by subtracting 𝛼1(𝑡) from the signal s(𝑡) as 𝑠(𝑡) − 𝛼1(𝑡) =

휀1(𝑡). The sifting process will be continued until the final residue is a constant, a 

monotonic function, or a function with only one maxima and one minima from which 

no more IMF can be derived. 

The subsequent basis functions and the residues are as 휀1(𝑡) − 𝛼2(𝑡) =

휀2(𝑡), … , 휀𝑀−1(𝑡) − 𝛼𝑀(𝑡) = 휀𝑀(𝑡), where 휀𝑀(𝑡) is the final residue. At the end of 

the decomposition, the signal s(𝑡)  is represented as: 𝑠(𝑡) = ∑ 𝛼𝑚(𝑡) + 휀𝑀(𝑡)𝑚 , 

where 휀𝑀(𝑡) is the final residue which can be either the mean trend or a constant, and 
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functions 𝛼𝑚(𝑡) are not guaranteed to be mutually orthogonal, but often are close to 

orthogonal, and all have zero means [31]. The EMD (individual IMF) of Doppler signal 

is illustrated in Fig. 3.2. 6 IMFs out of 13 IMFs are shown in Fig. 3.2. More specifically, 

the first component has the smallest time scale which corresponds to the fastest time 

variation of the data. As the decomposition process proceeds, the time scale increases, 

and hence, the mean frequency of the mode decreases [33]. Since the decomposition is 

based on the local characteristic time scale of the data to yield adaptive basis, it is 

applicable to nonlinear and non-stationary data in general and in particular. 

 

Fig. 3.2: Extraction of six IMFs through the decomposition of the signal  
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3.2.3 Discrete Hilbert transform 

The notion of frequency and energy for each IMF is obtained by employing the concept 

of analytic signals. The discrete Hilbert transform (DHT) is used to compute the 

analytic signal for an IMF. The analytic signal 𝑍𝑚(𝑡) corresponding to the 𝑚𝑡ℎ IMF 

𝛼𝑚(𝑡) is defined as 

𝑍𝑚(t) = 𝛼𝑚(𝑡) + 𝑗𝐻𝐷[𝛼𝑚(𝑡)] = 𝛾𝑚(𝑡)𝑒𝑗𝜃𝑚(𝑡),                     (3.1) 

where 𝛾𝑚(𝑡) and 𝜃𝑚(𝑡) are instantaneous amplitude and phase respectively of the 

𝑚𝑡ℎ IMF. The discrete Hilbert transform 𝐻𝐷[. ] is defined as 

𝐻𝐷[𝛼𝑚(𝑡)] =
1

𝜋
∑

𝛼𝑚(𝜏)

𝑡−𝜏
𝑇
𝜏=1,𝜏≠𝑡  .                                  (3.2) 

The analytic signal is advantageous in determining the instantaneous quantities such as 

energy, phase and frequency. The IF of 𝑚𝑡ℎ IMF is then given as the derivative of the 

phase 𝜃𝑚(𝑡)–calculated at t i.e. 

𝑓𝑚(𝑡) =
𝜕�̃�𝑚(𝑡)

𝜕𝑡
,                                               (3.3) 

where �̃�𝑚(𝑡) represents the unwrapped version of instantaneous phase 𝜃𝑚(𝑡). The 

derivative in Equation 3.3 is evaluated at discrete instant of time t. It should be noted 

that such derivative introduces the abrupt fluctuations of IF and hence nonlinear 

smoothing is required. Here, the moving average smoothing filter is used to remove 

such fluctuations. The filtering scheme improves the effectiveness of computing IF 

using discrete derivative. The IF of individual IMF shown in Fig. 3.2 is illustrated in Fig. 
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3.3. The concept of IF is physically meaningful only when applied to mono-component 

signals. In order to apply the concept of IF to arbitrary signals it is necessary to 

decompose the signals into a series of mono-component contributions. In the recent 

approaches [31], EMD technique decomposes a time domain signal into a series of 

mono-component IMFs. Then the IF derived for each component provides the 

meaningful physical information. 

 

Fig. 3.3: The IFs of the selected (1st to 6th) IMF components 

Although the IMFs may have frequency overlaps but at any time instant, the 

instantaneous frequencies represented by each IMF are different. This phenomenon can 

be well understood in Fig. 3.3 which shows the instantaneous frequencies of the first 6 

IMFs of the Doppler signal shown in Fig. 3.2. Therefore, EMD is an effective 

decomposition of non-linear and non-stationary signals in terms of their local frequency 
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characteristics. With such property, each frequency component of the signal is clearly 

identified and localized in both time and frequency scales yielding spectra at each 

sampling point. 

3.2.4 Hilbert spectrum 

Having obtained the IMFs as a result of the sifting process and IFs from each IMF, it is 

possible to generate the HS, or a three dimensional (3D) plot that represents the 

distribution of the signal energy as a function of time and frequency. In the figure time, 

frequency and energy are plotted on the X-coordinate, Y-coordinate and the 

Z-coordinate respectively. All the IFs are scaled between 0 and 0.5 and multiplied by the 

equation λ = 0.5/(𝐼𝐹𝑚𝑎𝑥 − 𝐼𝐹𝑚𝑖𝑛) for simplifying the generation of HS, where 𝐼𝐹𝑚𝑎𝑥 

and 𝐼𝐹𝑚𝑖𝑛 is the maximum and minimum IF calculated from all the IFs. The bin 

spacing of the HS is 0.5/B, where B is the number of desired frequency bins. The 

overall HS is defined as the amalgamation of the spectra of each of the IMFs. Hence, 

each element 𝐻(𝑏, 𝑡)  in the overall HS is defined as the weighted sum of the 

instantaneous amplitudes of all the IMFs at the 𝑏𝑡ℎ frequency bin. 

 

𝐻(𝑏, 𝑡) = ∑ 𝛾𝑚(𝑡)𝜔𝑚
(𝑏)𝑀

𝑚=1 (𝑡),                                  (3.4) 

𝜑(𝑏, 𝑡) = ∑ 𝜃𝑚(𝑡)𝜔𝑚
(𝑏)𝑀

𝑚=1 (𝑡),                                  (3.5) 
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where the factor 𝜔𝑚
(𝑏)(𝑡)  is equal to 1 if λ × 𝑓𝑚(𝑡)  (normalized instantaneous 

frequency) lies between two consecutive frequency bins, otherwise it is 0. Normalized 

instantaneous frequencies found from all the IMFs are not plotted in the cell of HS. Its 

corresponding instantaneous amplitude is plotted in the cell of HS using Equation 3.4.  

After computing the elements over the frequency bins, H represents the instantaneous 

signal spectrum in time-frequency (TF) space [34]. Fig. 3.4 illustrates the Hilbert 

spectrum of the Doppler ultrasound using 256 frequency bins. It is noted that the time 

resolution of H is equal to the sampling rate and the frequency resolution can be chosen 

up to the Nyquist limit [35]. During the construction of the Hilbert spectrum, the phase 

matrix 𝜑(𝑏, 𝑡) representing the phase information corresponding to each 

time-frequency cell of H(b,t) is saved. In Fig. 3.4, only one color is plotted for all the 

levels of energy except the zero level. For zero level nothing is plotted. Low frequency 

components energy are contributing more and high frequency components energy are 

contributing less in the HS. 
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Fig. 3.4: Hilbert spectrum of the Doppler ultrasound signal showing two parabolic 

shapes 

3.2.5 High frequency energy to low frequency energy ratio 

Our aim is to observe the synchrony between systolic phases in time domain with 

energy activities in the HS. With the intention of easing the interpretation of the HS, a 

threshold (TH) is determined to separate the HS into two regions, the region of low 

frequency components energy (RL) and the region of high frequency components 

energy (RH). The choice of the threshold is performed visually from the HS. It is 

observed that the RL is visually uniform throughout the spectrum. However in RH, two 

parabolic shapes are found (Fig. 3.4) which corresponds to the approximate location of 

two systolic phases and gas bubbles in time domain. The systolic phase could be 

detected within any location of the parabolic shape. This is due to the variation in timing 
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between systolic phase sound and pulmonary valve opening sound. However, another 

algorithm is required to detect gas bubble in the parabolic shape. The region between 

two parabolic shapes is also visually uniform. In RL, the low frequency components 

energy is summed up over the frequency bins at every time instant as L(t) =

∑ 𝐻𝑆(𝑡)𝑇𝐻
𝑏=1 . Similarly in RH, H(t) = ∑ 𝐻𝑆(𝑡)𝐵

𝑏=𝑇𝐻+1 . Ratio between L(t) and H(t) is 

defined as RA(t)=H(t)/L(t) and plotted in Fig. 3.5.  

 

Fig. 3.5: Ratio between high frequency energy and low frequency energy 

3.2.6 Signal reconstruction 

Systolic phase detection from RA(t) is obtained by signal reconstruction. Since RA(t) is 
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all the frequency bins at every instant of time. The time domain signal representing 

systolic phase is calculated by element wise multiplication of RA(t) and the cosine of 

the phase vector 𝜑(𝑏, 𝑡) as 

𝑠𝑝(𝑡) = 𝑅𝐴(𝑡) ∙ cos [𝜑(𝑏, 𝑡)],                                   (3.6) 

where the signal containing systolic phase is designated by sp(𝑡). In order to obtain a 

unique maximum for each systolic phase, sp(𝑡) is filtered through the low pass 

Butterworth filter of order ten. Having detected the systolic phase from the first block 

(one second signal) of the Doppler ultrasound, the same detection method is repeated 

for all other blocks of the signal. The order of the detected systolic phases is maintained 

and all the blocks are concatenated. The result shows that the detected systolic phases 

are well represented and localized in the figure. In Fig. 3.6 two systolic phases are 

detected which appear to be correct as detected by medical specialist. 
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Fig. 3.6: Two systolic phase in two cardiac cycles  

3.3 Results and discussions 

In the experiment, four levels (grades) of signal are considered to demonstrate the 

performance of the proposed method. In case of low graded signals very simple 

algorithm is required to detect systolic phase. On the other hand very efficient algorithm 

is required to detect systolic phase from high graded signals. Such algorithm could be 

used in the first phase to the detection of gas bubble. 

The study in [29], there are two parts. In the first part systolic phases are 

detected from Doppler ultrasound but the performance of this detection algorithm is not 
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cardiac output and arterial pressure signals but variation is found between the times of 

occurrence of successive systolic phase in the different signal types. Moreover, these 

signals are derived in an entirely different manner to the signal used here. Hence, again 

it is difficult to compare this to the method presented here. 

Therefore, the two most essential parameters used here for describing the overall 

performance of the systolic phase detection are: sensitivity SE and positive predictivity 

PP. The sensitivity reports the percentage of true systoles that are correctly detected. 

The positive predictivity reports the percentage of detected systoles which are in reality 

true systoles. The sensitivity and positive predictivity of the detection algorithms are 

computed by 

SE(%) =
𝑇𝑃

𝑇𝑃+𝐹𝑁
∗ 100,                                         (3.7) 

PP(%) =
𝑇𝑃

𝑇𝑃+𝐹𝑃
∗ 100,                                         (3.8) 

where TP is the number of true positives, FN the number of false negatives, and FP the 

number of false positives. The systolic phase detection result is illustrated in Table 3.1. 

Over 97 percent of the systolic phases are detected from grade 0 and grade 1 signal. In 

case of grade 2 signals, over 97 percent of the systolic phases are detected. However, for 

grade 3, the detection performance of our proposed algorithm is not as efficient as that 

for grade 2. All the grades of the signal are divided into two groups. In the first group 

first three grades are considered and the remaining grades are considered in another 
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group. It should be noted that these results may be influenced by the choice of the TH 

values.  

Table 3.1: Results of evaluation of the proposed algorithm 

Grade 
Systolic 
phase 

TP FN FP SE(%) PP(%) 

0 20 20 0 0 100 100 
0 20 20 1 0 95 100 

1 20 20 0 0 100 100 
1 20 19 1 1 95 95 
2 20 20 0 0 100 100 
2 20 19 1 1 95 95 
3 20 14 3 2 83 88 
3 20 13 3 3 82 82 
4 20 0 0 0 0 0 
4 20 0 0 0 0 0 
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CHAPTER 4 

Signal segmentation 

4.1 Time-varying mean frequency 

The time-varying mean frequency is expressed in terms of the time waveform [40]. The 

results obtained from the time-varying mean frequency could give a strong motivation 

for time-frequency analysis. Considering first, 

Ѡs(𝑡) = Ѡ𝛾(𝑡)𝑒𝑗𝜃(𝑡) 

  = 1

𝑗

𝑑

𝑑𝑡
𝛾(𝑡)𝑒𝑗𝜃(𝑡) 

  = (𝜃′(𝑡) − 𝑗
𝛾′(𝑡)

𝛾(𝑡)
) 𝑠(𝑡).                                 (4.1) 

For convenience, the frequency operator can be defined as, 

Ѡ = 1

𝑗

𝑑

𝑑𝑡
 . 

Therefore, the mean frequency is 

〈𝜔〉 = ∫ 𝜔|𝑆(𝜔)|2𝑑𝜔 

  = ∫ 𝑠∗(𝑡)
1

𝑗

𝑑

𝑑𝑡
𝑠(𝑡)𝑑𝑡 

  = ∫ (𝜃′(𝑡) − 𝑗
𝛾′(𝑡)

𝛾(𝑡)
) 𝛾2(𝑡)𝑑𝑡 .                           (4.2) 

In the case of mean frequency it can be proved that 

〈𝜔〉 = ∫ 𝜔|𝑆(𝜔)|2𝑑𝜔 

  = 1

2𝜋
∭ 𝜔 𝑠∗(𝑡)𝑠(𝑡′)𝑒𝑗(𝑡−𝑡′)𝜔𝑑𝜔𝑑𝑡′𝑑𝑡 
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  = 1

2𝜋𝑗
∭ 𝑠∗(𝑡)𝑠(𝑡′)

𝜕

𝜕𝑡
𝑒𝑗(𝑡−𝑡′)𝜔𝑑𝜔𝑑𝑡′𝑑𝑡 

  = 1

𝑗
∬ 𝑠∗(𝑡)

𝜕

𝜕𝑡
𝛿(𝑡 − 𝑡′)𝑠(𝑡′)𝑑𝑡′𝑑𝑡 

  = ∫ 𝑠∗(𝑡)
1

𝑗

𝑑

𝑑𝑡
𝑠(𝑡)𝑑𝑡 .                                  (4.3) 

In Equation 4.2, the second term is zero. This can be seen in two ways. First, since that 

term is purely imaginary it must be zero for 〈𝜔〉 to be real. Alternatively, we note that 

the integrand of the second term is a perfect differential that integrates to zero. Hence 

〈𝜔〉 = ∫ 𝜃′(𝑡) |𝑠(𝑡)|2𝑑𝑡  

  = ∫ 𝜃′(𝑡) |𝛾(𝑡)|2𝑑𝑡 .                                   (4.4) 

This is an interesting and important result because it says that the mean frequency could 

be obtained by integrating something with the density over all time. This something 

must be the instantaneous value of the quantity for which we are calculating the average. 

In this case the something is the derivative of the phase, which could be appropriately 

called the frequency at each time or the instantaneous frequency 𝑓(𝑡), 

𝑓(𝑡) = 𝜃′(𝑡) .                                               (4.5) 

In the case of IMF, Equation 4.4 can be defined in terms of instantaneous amplitude and 

instantaneous frequency [41], 

𝐹𝜇(𝑡) = ∑ 𝛾𝑚
2 (𝑡)𝑀

𝑚=1 𝑓𝑚(𝑡),                                     (4.6) 

where M is the number of IMF and 𝐹𝜇(t) is the time-varying mean frequency. The 

time-varying mean frequency is determined by using Equation 4.6 and given in Fig. 4.1. 
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Fig. 4.1: Time-varying mean frequency 

4.2 Signal segmentation algorithm 

Usually, specific part of a signal belonging to a specific event is determined by various 

algorithms of signal processing using signal characteristics of its waveform such as 

signal frequency, amplitude, phase, time duration, time-varying mean frequency, 

morphology and etc. It is found that the choice of the algorithm depends on the 

characteristics of the signal. It is observed that gas bubble signal appear as very smooth 

increasing trend in the time-varying mean frequency. An algorithm is applied to the 

time-varying mean frequency to extract the segments belonging to the very smooth 

increasing trend. These segments could be either gas bubble or other similar events. It is 

proved in the next chapter that these segments are representing either gas bubble or not 

on the basis of gas bubble features. At first the time-varying mean frequency is 

segmented into small sub-segments. Considering the gas bubble signal length, small 
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sub-segments length is determined. It is observed that three or more sub-segments are 

required to make a segment which could be gas bubble signal. The detection of the 

segment representing gas bubble could be difficult when the length of the sub-segment 

is selected inappropriately. A large sub-segment could have some characteristics of gas 

bubble signal and some characteristics of other signal. On the other hand, a small 

sub-segment not representing gas bubble signal could be found between two other small 

sub-segments representing gas bubble signal. In this thesis, the length of the 

sub-segment is determined empirically. Each sub-segment is taken into account to 

calculate the average slope 𝑆𝜇 . Three parallel lines are drawn in Fig. 4.2. First 

sub-segment between first and second line is shown and second sub-segment between 

second and third line is shown. Similarly the remaining part of the signal is segmented 

and the following algorithm is applied. Close snapshot of the sub-segments in Fig. 4.2 is 

taken and illustrated in Fig. 4.3. 
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Fig. 4.2: Sub-segments in time-varying mean frequency 

 

Fig. 4.3: Close snapshot of sub-segments in time-varying mean frequency 
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characteristic such as amplitude, average slope, and deflection width. The consecutive 

sub-segments having those characteristics are merged to generate a segment which 

could be gas bubble.  

Each sub-segment is numbered and processed serially using the ascending slope 

tracing algorithm. An array having length equal to the number of sub-segments is used 

during the processing of the sub-segments. Initially, all the array elements are zero. The 

average slope of the sub-segment is calculated by dividing the accumulated 

time-varying mean frequency difference between neighboring N+ 1 samples by N using 

Equation 4.7. 

𝑆𝜇 = |∑ (𝑥[𝑖] − 𝑥[𝑖 − 1]) 𝑁⁄𝑛
𝑖=𝑛−𝑁+1 | ,                            (4.7) 

where N+1 is the number of samples of each sub-segment. Then the following 

algorithm is applied to that sub-segment. If the sub-segment can satisfy the algorithm, 

its corresponding number is inserted into the array. Once all the sub-segments are 

processed, the consecutive sub-segment numbers are counted. Three or more 

consecutive sub-segments are merged and considered a new segment for further 

processing. The numbering scheme is illustrated in Fig. 4.4. In Fig. 4.4, sub-segments 2, 

3 and 4 are merged and considered a new segment. Similarly, sub-segments 8, 9, 10 and 

11 are merged and considered as a new segment. 
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0 2 3 4 0 0 0 8 9 10 11 0 0 0 0 0 

Fig. 4.4: An array for processing the sub-segments 

 

The steps of the algorithm are as follows: 

Step 1: A sub-segment is taken and average slope 𝑆𝜇1 is calculated. Once all the 

sub-segments are processed, go to step 7. 

Step 2: If 𝑆𝜇1 is greater than zero, it is saved. Otherwise go to step 1. 

Step 3: Next sub-segment is taken and average slope 𝑆𝜇2 is calculated. Once all the 

sub-segments are processed, go to step 7. 

Step 4: If 𝑆𝜇2 is greater than zero, it is saved. Otherwise, go to step 1.  

Step 5: The following two conditions are tested 

 𝑆𝜇1 is greater than 75% of 𝑆𝜇2.  

 𝑆𝜇2 is greater than 75% of 𝑆𝜇1. 

If condition 1 or condition 2 is satisfied, numbers of both sub-segments are placed 

directly into its corresponding position in the output array. 

Step 6: Set 𝑆𝜇1=𝑆𝜇2 and go to step 3. 

Step 7: If at least three or more than three consecutive sub-segments are found into the 

array, all the sub-segments are merged and considered it as a segment. This segment is 

considered as a candidate to be gas bubble. In the next chapter it is proved that either 
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this segment in time-varying mean frequency domain is representing gas bubble or not. 

 

Fig. 4.5: Three segments in time-varying mean frequency 

The above algorithm extracts three segments, as shown in Fig. 4.5. Larger version of 

these segments is shown in Fig. 4.6, 4.7 and 4.8 respectively. Sometimes, other parts of 

the signal not belonging to gas bubble are obtained using this algorithm. In Fig. 4.6, 

such a segment is obtained. It is most likely that this segment could belong to the 

cardiac valve opening sound.  
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Fig. 4.6: Larger version of first segment out of three segments  

 

 

Fig. 4.7: Larger version of second segment out of three segments  
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Fig. 4.8: Larger version of third segment out of three segments  
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CHAPTER 5 

Defining the parameters 

5.1 Finding the parameters from segments 

All the segments found in the last chapter are used in this chapter to find out some 

parameters. Some parameters are determined from the segment of time-varying mean 

frequency domain and some parameters are determined from the corresponding segment, 

but in IMF-based time domain. The segment in time-varying mean frequency domain 

which could belong to the gas bubble signal or other events is decided on the basis of 

calculated parameters in that domain. Similarly, the same segment in IMF-based time 

domain which could belong to the gas bubble signal or other events is decided based on 

the parameters in that domain. In fact, validation is performed in two domains for the 

same segment. In the following sections, at first the parameters in time-varying mean 

frequency domain are discussed, then the parameters in IMF-based time domain are 

discussed. 

5.2 Parameters in time-varying mean frequency domain 

Many segments could be found in the time-varying mean frequency domain. The 

segments are very much similar. However, some parameters could discriminate the gas 

bubble segments from other segments. It is found that the following parameters are very 

useful to the detection of gas bubble segment. 
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5.2.1 Spreading in frequency (𝑭𝑺) 

Many gas bubble signals exhibit varying frequency content. Gas bubble signal is 

described as “frequency focused” as well as “short duration” high intensity transients. 

It is believed that spreading in frequency could play a vital role to discriminate between 

gas bubble signals and other related events. The segments representing either gas bubble 

signal or other events such as valve motion, blood cell movement or systolic phase in 

time-varying mean frequency domain are taken into account to determine the spreading 

in frequency. It is defined as, 

 𝐹𝑆 = ∑ (𝐹𝐼(𝑡) − 𝐹𝜇(𝑡))
2

𝑆𝐵
2(𝑡),                                  (5.1) 

where 𝑆𝐵 is obtained by summing or integrating sections of the IMFs. Residue is not 

considered. Sections of the IMFs corresponding to the segment of time-varying mean 

frequency are extracted. A segment in time-varying mean frequency domain and its 

corresponding sections in IMFs are shown in Fig. 5.1 and 5.2 respectively. Then, 𝑆𝐵 is 

defined as, 

𝑆𝐵 = ∑ 𝑎𝑚(𝑡)𝑀
𝑚=1 ,                                            (5.2) 

where the section of IMF is represented by 𝑎 and M is the number of IMF. Similarly, 

sections of the IFs corresponding to the same segment are taken and summed up. 

Sections of each IF are shown in Fig. 5.3. Then, 𝐹𝐼 is defined as, 

𝐹𝐼 = ∑ 𝜔𝑚(𝑡)𝑀
𝑚=1 ,                                            (5.3) 



56 

 

where the section of IF is denoted by 𝜔 and M is the number of IF. In Equation 5.1, 

time-varying mean frequency is designated by 𝐹𝜇. 

 

Fig. 5.1: Segment in time-varying mean frequency domain 

 

Fig. 5.2: Segment corresponding section in IMFs 
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Fig. 5.3: Segment corresponding section in IFs 

5.2.2 Ratio of the gas bubble signal to the background signal (𝑹𝑩𝑩) 

Ratio of the gas bubble signal to the background signal is determined to show that how 

strong a gas bubble signal is with respect to the background signal. In [42], M. A. 

Moehring and J. R. Keppler introduced this ratio. The 𝑅𝐵𝐵 is the major character 

which is used to distinguish gas bubble signal from the normal blood signals [43]. Also, 

the 𝑅𝐵𝐵 could be applied to evaluate the gas bubble diameter [44]. The 𝑅𝐵𝐵 is defined 

as follows, 

𝑅𝐵𝐵 =
𝑃𝑆

𝑃𝐵
 ,                                                  (5.4) 

where 𝑃𝑆 is the power at time-varying mean frequency with maximum intensity. It is 

determined from the segment, which is considered as candidates for gas bubbles. 𝑃𝐵 is 

the average power of the background signal in time-varying mean frequency domain. 
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All the segments found by applying the ascending slope tracing algorithm are removed 

from the time-varying mean frequency. The remaining sections, as shown in Fig. 5.4 are 

taken into account to calculate the 𝑃𝐵. The remaining sections are taken to perform 

addition and divided by the time interval. It is defined as,  

𝑃𝐵 =
1

𝑡2−𝑡1
∑ 𝐹𝜇

2(𝑡)
𝑡2
𝑡=𝑡1

 .                                        (5.5) 

 

Fig. 5.4: The remaining sections after removing the segments 
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of power a gas bubble signal has with respect to the background signal. This property 

provides an important basis for the gas bubble signal detection. However low 𝑅𝑇𝐵 

could make the differentiation between gas bubble signal and other similar events 

unreliable. The 𝑅𝑇𝐵 is defined as, 

𝑅𝑇𝐵 =
𝑃𝑇

𝑃𝐵
 ,                                                  (5.6) 

where 𝑃𝑇 is the gas bubble signal’s total power. It is determined from the segment 

extracted from the time-varying mean frequency. The 𝑃𝑇  is defined as,  

𝑃𝑇 = ∑ 𝐹𝜇
2(𝑡)

𝑡𝑏
𝑡=𝑡𝑎

 .                                            (5.7) 

𝑃𝐵 is the average power of the background signal, already defined in Equation 5.3. 

5.2.4 Rising rate of the gas bubble signal (𝑹𝑩) 

Time-varying mean frequency is derived from the IF and instantaneous amplitude of the 

IMFs. It is very difficult to find out any clue from the IF and the instantaneous 

amplitude for the detection of gas bubble signal. However, a smooth increasing trend is 

figured out in the time-varying mean frequency domain. It is found that all of the 

increasing trends are not representing gas bubble signal. Some of them are representing 

gas bubble signals. Therefore, the rising rate representing gas bubble signal is 

determined. The 𝑅𝐵 is defined as, 

𝑅𝐵 =
𝑃𝑋−𝑃𝑀

𝑡𝑏−𝑡𝑎
 ,                                                (5.8) 

where 𝑃𝑋 is the maximum power obtained from the segment of time-varying mean 



60 

 

frequency. Similarly, 𝑃𝑀 is the minimum power obtained from the same segment. 

𝑡𝑏 − 𝑡𝑎 is the time duration of the segment. 

5.3 Parameters in IMF-based time domain 

Some parameters similar to those of time-varying mean frequency domain are defined 

in this section. However, the following parameters are defined in IMF-based time 

domain. The parameters in time-varying mean frequency domain are plying a vital role 

to the detection of gas bubble signal. In addition to this, to achieve more accuracy, the 

parameters in IMF-based time domain are defined. In fact, the original signal is not used 

in determining the parameters. Instead of the original signal, some selected IMFs of the 

original signal are used. 

5.3.1 Spreading in time (𝑻𝑺) 

Section of each IMF corresponding to the segment of time-varying mean frequency is 

extracted to define the spreading in time. The reason for defining the section’s time 

spreading is that it could correspond to the gas bubble signal. In addition to this, it could 

provide a gross characterization of the signal density and it could provide an indication 

of where the density is concentrated. Many measures can be used to ascertain whether 

the density is concentrated around the average, the most common being the spreading in 

time 𝑇𝑆, given by, 
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𝑇𝑆 = ∑ (𝑇𝐼(𝑡) − 𝑇𝜇(𝑡))
2

𝑆𝐷
2(𝑡),                                  (5.9) 

where 𝑇𝜇 is the average time of the segment. 𝑆𝐷 is obtained from the section of each 

IMF. The section of each IMF corresponding to the segment in time-varying mean 

frequency is summed up and designated as 𝑆𝐷. If 𝑆𝐷
2 is considered as a signal density 

in time, the average time can be defined in the usual way. 

𝑇𝜇 = ∑ 𝑇𝐼(𝑡) ∙  𝑆𝐷
2(𝑡)

𝑡𝑏
𝑡=𝑡𝑎

,                                      (5.10) 

where 𝑡𝑎 is the time of the segment’s first sample and 𝑡𝑏 is the time of the segment’s 

last sample. In a small interval of time, the segment takes 𝑆𝐷
2(𝑡) ∙ 𝑇𝐼(𝑡) amount of 

energy to produce the segment at that time. 

5.3.2 Ratio of the gas bubble signal to the background signal (𝑻𝑩𝑩) 

Ratio of the gas bubble signal to the background signal is determined for time-varying 

mean frequency domain in the previous section. In this section, this parameter is 

determined in IMF-based time domain. Because of different acoustic properties 

between the gas bubble signal and the red blood cell signal, the high-intensity transient 

in the temporal waveform of the Doppler ultrasound signal provides a simple way to 

detect the gas bubble signal [47]. The 𝑇𝐵𝐵 is given as follows,  

𝑇𝐵𝐵 =
𝐸𝑆

𝐸𝐵
 ,                                                 (5.11) 

where 𝐸𝑆 is the segment’s maximum energy at time 𝑡. This segment does not belong 

to the time-varying mean frequency domain. It belongs to the combination of IMFs or 
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IMF-based time domain signal. The segment found in time-varying mean frequency 

domain is taken into consideration, and then its corresponding section in combined 

IMFs is extracted. 𝐸𝑆 is obtained from this section of IMFs. 𝐸𝐵 is the average energy 

of the background signal in IMF-based time domain. It is determined from the IMFs. 

The 𝐸𝐵 is defined as,    

𝐸𝐵 =
1

𝑡2−𝑡1
∑

1

𝑀

𝑡2
𝑡=𝑡1

∑ 𝑎𝑚(𝑡)𝑀
𝑚=1 ,                                 (5.12) 

where the IMF is represented by 𝑎 and M is the number of IMF. Taking into account 

the segments of time-varying mean frequency domain, its corresponding sections in 

IMFs are removed and the remaining sections are integrated and divided by M using the 

Equation 5.12. Then it is divided by the time interval 𝑡2 − 𝑡1, time duration of the 

whole signal to obtain 𝐸𝐵. Diastolic phase, some parts of systolic phase, noises and 

valve motions could contribute to the 𝐸𝐵. 

 

 

 

 

 

 

 



63 

 

5.3.3 Ratio of the gas bubble signal’s total energy to the background signal 

(𝑻𝑻𝑩) 

The segment is taken from the IMFs to calculate the 𝑇𝑇𝐵, as in section 5.2.2. The 𝑇𝑇𝐵 

is defined as, 

𝑇𝑇𝐵 =
𝐸𝑇

𝐸𝐵
 ,                                                  (5.13) 

where 𝐸𝑇 is the segment’s total energy in IMF-based time domain. Since 𝑆𝐷
2 is the 

energy per unit time it could be appropriately called the energy density or instantaneous 

power. If 𝑆𝐷
2 is the energy per unit time, then the total energy is obtained by summing 

or integrating over the time interval 𝑡𝑏 − 𝑡𝑎, where 𝑡𝑏 − 𝑡𝑎 is the time interval of the 

segment. The 𝐸𝑇 is given as, 

𝐸𝑇 = ∑ 𝑆𝐷
2(𝑡)

𝑡𝑏
𝑡=𝑡𝑎

.                                            (5.14) 

𝐸𝐵 is the average energy of the background signal in IMF-based time domain. It is 

defined in Equation 5.12.  

 

5.3.4 Rising rate of the gas bubble signal (𝑻𝑩) 

In time-varying mean frequency domain, the rising trend representing gas bubble signal 

is very clear. In IMF-based time domain signal it is not very clear. However, it is useful 

to discriminate gas bubble signal from diastolic phase. The 𝑇𝐵 is defined as, 
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𝑇𝐵 =
𝐸𝑋−𝐸𝑀

𝑡𝑏−𝑡𝑎
 ,                                               (5.15) 

where 𝐸𝑋  is the maximum energy obtained from the segment in IMF-based time 

domain. Similarly, 𝐸𝑀  is the minimum energy obtained from the same segment. 

𝑡𝑏 − 𝑡𝑎 is the time duration of the segment. 
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CHAPTER 6 

Development of an algorithm for gas bubble detection 

6.1 Gas bubble detection 

Gas bubble is detected on the basis of two sets of parameters; one set contains 𝐹𝑆, 𝑅𝐵𝐵, 

𝑅𝑇𝐵, and 𝑅𝐵; and another set contains 𝑇𝑆, 𝑇𝐵𝐵, 𝑇𝑇𝐵, and 𝑇𝐵. All these parameters are 

defined in the previous chapter. Each parameter is belonging to the different range of 

values. It is very natural since each parameter carrying different meaning. Most of the 

times a segment having all the valid values for all the parameters is considered as a gas 

bubble signal. In that case, gas bubble detection is not very difficult. However, 

sometimes one segment provides some valid values for some parameters which are 

belonging to the gas bubble signal and some invalid values for the remaining parameters 

which are not belonging to the gas bubble signal.  In that case, taking into account all 

the parameters for the detection of gas bubble signal is very much challenging. In fact, 

one single parameter or several parameters cannot provide reliable result for the gas 

bubble detection. Taking crisp decision on the basis of combination of the parameters is 

not very much effective in the clinical diagnosis. The fuzzy logic rule based approach, 

which provides non-crisp decision, is more reasonable in the clinical diagnosis. Using 

the fuzzy sets theory, the automated gas bubble detection approach which combines all 

the parameters are proposed in this chapter. Moreover, the fuzzy logic rule based 
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approach is more suitable for the clinical diagnosis and makes it possible to integrate 

the automated detection and the expert experience together.  

6.2 Membership function 

The fuzzy sets theory is proposed by Zadeh in 1965 [48]. Many classes of objects do not 

have precisely defined membership in the real world, e.g. in the clinical diagnose. So 

the transition of an object from membership to non-membership is gradual rather than 

abrupt. In the fuzzy sets theory, the membership function is introduced to characterize 

the extent to which a parameter belongs to a certain class. A membership function is 

proposed in this chapter. Four thresholds are used to construct the membership function. 

The threshold values which are given in Table 6.2 are determined by statistical 

evaluation of the parameters. The membership function is illustrated in Fig. 6.1. The 

output-axis is a number known as the membership value between 0 and 1. This 

trapezoidal membership function is described by four thresholds and it is given by the 

following expressions. 

𝑚𝑓1 = 0  For 𝑝 ≤ 𝑇𝐷1,    (6.1) 

𝑚𝑓12 =
𝑝−𝑇𝐷1

𝑇𝐷2−𝑇𝐷1
  For 𝑇𝐷1 < 𝑝 ≤ 𝑇𝐷2,   (6.2) 

𝑚𝑓23 = 1  For 𝑇𝐷2 < 𝑝 ≤ 𝑇𝐷3,   (6.3) 

𝑚𝑓34 =
𝑇𝐷4−𝑝

𝑇𝐷4−𝑇𝐷3
  For 𝑇𝐷3 < 𝑝 ≤ 𝑇𝐷4,   (6.4) 

𝑚𝑓4 = 0  For 𝑝 > 𝑇𝐷4,    (6.5) 
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where membership function and parameter values are denoted by 𝑚𝑓  and 

𝑝 respectively, TD1 and TD4 locate the “feet” of the trapezoidal function and TD2 and 

TD3 locate the “shoulder” of the trapezoidal function, as shown in Fig. 6.1. These 

threshold values are very much dependent on the Doppler ultrasound signal. The 

interval between TD2 and TD3 is little bit longer. This is due to the variation in values 

of the parameters.  

 

 

 

 

 

 

 

Fig. 6.1: Membership function for the detection of gas bubble signal 

6.3 Membership rules and membership values 

The membership values for the most parameters are determined according to the 

membership rules illustrated in Table 6.1, which are derived from the membership 

function illustrated in Fig. 6.1. Each membership rule consists of a single parameter and 

their corresponding threshold values. In this way eight membership rules are derived; 

TD1 TD4 

TD2 TD3 

0 

1 

Parameter values
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four membership rules in time-varying mean frequency domain and four membership 

rules in IMF-based time domain. It is found that different parameters have four different 

threshold values. Different threshold values for different parameters are given in Table 

6.2. A set of signals containing 50 gas bubble signals are used to determine the 

thresholds. At first, the parameters defined in the previous chapter are calculated from 

the 50 gas bubble signals. These 50 gas bubble signals are detected by Doppler 

ultrasound and gas bubble signal specialists on the basis of visual and hearing 

inspection. Then, mean and standard deviations for all the parameters are calculated 

from the gas bubble signals. Considering these mean and standard deviations, threshold 

values are determined for all the parameters. These threshold values are illustrated in 

Table 6.2.  

Having obtained a segment and its corresponding parameters, membership 

values are calculated using the Equations 6.1-6.5 and the Table 6.1 for all the parameters. 

Average of these membership values is determined. The final decision regarding the 

segment is taken on the basis of average membership values of all the parameters. A 

segment having an average membership value of 1 is considered as a gas bubble signal 

or properly “detected” gas bubble signal. On the other hand, a segment having an 

average membership value between 0 and 1 is considered as a “poorly detected gas 

bubble signal” or “detected with poor accuracy”. A segment having an average 
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membership value between 0 and 1 and a threshold value less than TD1 for any of the 

parameters is considered as a “not detected” gas bubble signal. Similarly, a segment 

having an average membership value between 0 and 1 and a threshold value greater than 

TD4 for any of the parameters is considered as a “not detected” gas bubble signal. All 

the parameters of a segment must have a membership value greater than 0 to be a gas 

bubble signal. Otherwise, it is not considered as a gas bubble signal. It should be noted 

that the gas bubble detection results could be influenced by the choice of the threshold 

values.  
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Table 6.1: Membership rules for the detection of gas bubble signal 

 <=TD1 >TD1 or <=TD2 >TD2 or <=TD3 >TD3 or <=TD4 > TD4 

𝐹𝑆 0 𝑚𝑓12 1 𝑚𝑓34 0 

𝑅𝐵𝐵 0 𝑚𝑓12 1 𝑚𝑓34 0 

𝑅𝑇𝐵 0 𝑚𝑓12 1 𝑚𝑓34 0 

𝑅𝐵 0 𝑚𝑓12 1 𝑚𝑓34 0 

𝑇𝑆 0 𝑚𝑓12 1 𝑚𝑓34 0 

𝑇𝐵𝐵 0 𝑚𝑓12 1 𝑚𝑓34 0 

𝑇𝑇𝐵 0 𝑚𝑓12 1 𝑚𝑓34 0 

𝑇𝐵 0 𝑚𝑓12 1 𝑚𝑓34 0 
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Table 6.2: Threshold values of the parameters in the time-varying mean frequency 

domain and in the IMF-based time domain 

 TD1 TD2 TD3 TD4 

𝑭𝑺 0.01 0.05 0.25 0.3 

𝑹𝑩𝑩 0.0005 0.001 0.002 0.0025 

𝑹𝑻𝑩 0.005 0.01 0.02 0.025 

𝑹𝑩 1 1.2 1.8 2 

𝑻𝑺 0.02 0.03 0.08 0.09 

𝑻𝑩𝑩 3 3.5 4 4.5 

𝑻𝑻𝑩 3 3.5 5.5 6 

𝑻𝑩 25 30 40 45 

 

6.4 Results and discussions 

The gas bubble signal detection algorithm is applied to the different grades of gas 

bubble signal. All the grades are discussed in the first chapter. Most of the algorithms 

for the gas bubble detection provide detection results in the similar way, either gas 

bubble signal is detected or not. However, a new way is introduced in this research for 
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showing the gas bubble detection results. A gas bubble signal with an average 

membership value between 0 and 1 is considered as a “detected with poor accuracy” gas 

bubble signal. Sometimes, a segment with an average membership value of 1 is 

obtained. However, it is not gas bubble signal since it is not found in the search region. 

Therefore, the segment not found in the search region is considered as the “false 

detection”. Parameters 𝐹𝑆, 𝑅𝑇𝐵, 𝑇𝑆, and 𝑇𝑇𝐵 is playing a vital role to distinguish the 

gas bubble signal from other events since the whole segment is taken into account to 

determine the parameters. On the other hand, parameters 𝑅𝐵𝐵, 𝑅𝐵, 𝑇𝐵𝐵 and 𝑇𝐵 can 

provide the similar values for the segments belonging to gas bubble signal as well as 

other events since the whole segment is not considered in determining the parameters. 

Gas bubble signal detection results are illustrated in Table 6.3 for different grades of the 

gas bubble signal.  

Table 6.3: Gas bubble signal detection using average membership value 

grade number of 
gas bubbles 

“detected” “detected with 
poor accuracy” 

“not 
detected” 

“false 
detection” 

data 
duration 

I 50 96% 2% 2%  163 sec 

II 50 96% 2% 2%  72 sec 

III 50 84% 2% 14% 10%  58 sec 
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In Fig. 6.2 and 6.3, grade I signal and its corresponding time-varying mean frequency is 

shown respectively. In the Fig., detected gas bubble signal is marked by the arrow. 

Similarly in Fig. 6.4, 6.5, 6.6 and 6.7, grade II, grade III signal, time-varying mean 

frequency and gas bubble signal are shown. In Fig. 6.4 and 6.5, two gas bubble signals 

are found. In Fig. 6.2, 6.3, 6.6 and 6.7, only one gas bubble is found.  
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Fig. 6.2: Grade I Doppler ultrasound signal 

 

 

Fig. 6.3: Time-varying mean frequency of Fig. 6.2 
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 Fig. 6.4: Grade II Doppler ultrasound signal 

 

 

Fig. 6.5: Time-varying mean frequency of Fig. 6.4 
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Fig. 6.6: Grade III Doppler ultrasound signal 

 

 

Fig. 6.7: Time-varying mean frequency of Fig. 6.6 
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In this thesis, an algorithm is addressed for detecting the gas bubbles from Doppler 

ultrasound signal. We have successfully employed the EMD method to decompose the 

signal into IMFs. Then DHT is employed to the IMFs to obtain three components; IF, 

instantaneous amplitude and instantaneous phase. Recently, the EMD and DHT are 

together used as a potential tool for time-frequency-energy representation (as HS) of 

time domain signals, especially of nonlinear and nonstationary signals. Therefore HS is 

generated and a new representation and interpretation of that HS is given. The new 

representation of HS is focused in this thesis. The new representation of HS can provide 

the instantaneous spectral information of the Doppler ultrasound signal as well as the 

overall contribution to the systolic phase and gas bubble signal. The specialty of this 

new representation of HS is that the time resolution can be as precise as the sampling 

period and the frequency resolution depends on the choice up to Nyquist limit. Also it 

does not include cross spectral terms. In the HS, an area with parabolic outline at 

regular intervals is found within which it is expected that systolic phase and gas bubble 

signal exists. An algorithm is developed to detect systolic phase in the HS. Systolic 

phase detection results are illustrated in terms of sensitivity and positive predictivity. In 

case of grade 0, grade I and grade II signal, over 97 percent of the systolic phases are 

detected. In case of grade III signal, over 84 percent of the systolic phases are detected. 

Systolic phase detection could provide the tentative location of gas bubble signal. Hence, 
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it should be noted that the gas bubble detection is highly dependent on the systolic 

phase detection. In fact, detecting systolic phase from high graded signal is very much 

challenging.   

In the next step, time-varying mean frequency is derived from IF and 

instantaneous amplitude. Some smooth increasing trends are found in the time-varying 

mean frequency. It is observed that these trends or segments could belong to the gas 

bubble signal or other similar events. An algorithm is developed to extract these 

segments. Taking into account these segments locations, their corresponding locations 

in IMFs are extracted and combined. A segment representing gas bubble signal or other 

similar events are clearly visualized in both domains. Some statistical parameters are 

determined from the segments of time-varying mean frequency domain and IMF-based 

time domain. Most of the detection algorithms derive parameters either in frequency 

domain or in time domain. To achieve more accuracy two sets of parameters in two 

domains are derived in this thesis; one set of parameters in time-varying mean 

frequency domain and another set of parameters in IMF-based time domain. Hence, it is 

playing a significant role to the detection of gas bubble. Some predefined thresholds for 

each of these parameters are, potentially, be used as input arguments to the fuzzy logic 

based rules. Each rule is derived strictly for each of the parameters. The membership 

values found from the fuzzy logic rules are used to calculate an average membership 
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value for the segment. A segment to be gas bubble must have an average membership 

value of 1. In addition, it is checked to find the correspondence between this segment 

location and the search area found in the first phase. A segment having an average 

membership value between 0 and 1 is termed as “detected with poor accuracy”. 

Otherwise, the segment does not belong to the gas bubble signal.  In case of grade I 

and grade II signal, over 96 percent of the gas bubble is detected. In case of grade III 

signal, over 84 percent of the gas bubbles are detected.   
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CHAPTER 7 

Conclusions and future directions 

7.1 Conclusions 

This thesis has investigated a novel approach to the detection of gas bubble signals from 

pulsed Doppler ultrasound signal. For this investigation EMD, DHT, new representation 

of HS, ascending slope tracing algorithm and fuzzy logic rule based method is very 

adequate. At first, EMD method is employed successfully to decompose the signal. The 

EMD can be considered as a filter-bank analysis. This filter-bank is an automatic and 

data adaptive time-variant filtering and especially more suitable in the analysis of 

nonharmonic signals. DHT is applied to the IMFs to obtain three instantaneous 

components; instantaneous amplitude, instantaneous phase and IF. Then HS is generated 

and new representation and interpretation of HS is given by plotting the 

time-frequency-energy in a different way. It is observed that normally the interpretation 

of HS is very complex. The complexity of the interpretation of the HS motivated an 

alternative visualization. This study shows that how a search area or parabolic shape is 

visualized in the new time-frequency-energy representations. The new representations 

or new HS found from grade I, II and III Doppler ultrasound signals are very clear. It is 

observed that gas bubble and systolic phase is found in this new HS. It requires some 

processing steps to detect systolic phase in the new HS. This new HS illustrates the 
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empirical relation between time, frequency and energy which is very advantageous to 

the detection of systolic phase. It is clear that the presence of parabolic shape in 

time-frequency-energy domain corresponds to the systolic phase in time domain. 

However, more processing steps are required to the detection of gas bubble signals. 

Given instantaneous amplitude and IF, time-varying mean frequency is 

determined which gives some a clue to the detection of gas bubble signal. An algorithm 

called ascending slope tracing algorithm is applied to segment the signal. Considering 

very small sub-segments and merging the sub-segments on the basis of their physical 

properties is very much challenging. Then the corresponding segments in IMF-based 

time domain are extracted. The segments in time-varying mean frequency domain and 

in IMF-based time domain are taken into account to calculate the parameters. A fuzzy 

logic rule is applied to each of the parameters and membership values are determined. 

Membership values are very good indicators to show its degree of accuracy in the 

detection process. In the medical diagnosis, the degree of accuracy is more acceptable 

than the binary result. 

Quantitative results are shown in chapter 3 and chapter 6. In chapter 3, systolic 

phase detection results are given. A quantitative systolic phase detection efficiency is 

presented in terms of SE and PP, and obtained very good results for grade I, II and III 

signals. Similarly gas bubble detection results are given in chapter 6 in terms of average 
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membership value. As the systolic phase detection, very good detection results for gas 

bubble signals are achieved for grade I and II signals. For grade III signals, the gas 

bubble detection results are not as good as the grade I and II.  The proposed algorithm 

is applicable to grade 0, I, II and III signals. In the case of grade 0 signal, there is no gas 

bubble in the signal. Only systolic phases are found in the signal. 

The unique aspects of this thesis are – (a) a search region is defined within 

which gas bubble signal and systolic phase could exist. This search region is found in 

the new representation of HS which is very much effective for the Doppler ultrasound 

signal, more specifically for the high graded Doppler ultrasound signal. - (b) the 

development of an algorithm called ascending slope tracing algorithm. This algorithm is 

applied to the time-varying mean frequency for the purpose of signal segmentation on 

the basis of gas bubble signal characteristics. Despite the variation in gas bubble signal 

strength this algorithm can detect the segments representing the gas bubble signal. - (c) 

the gas bubble detection based on fuzzy logic rule. Using different threshold values for 

different parameters is very difficult for making a meaningful decision for the gas 

bubble signal detection in the field of medical diagnosis. Hence membership values are 

used instead of threshold values for all the parameters. Then the gas bubble detection 

results are defined precisely in terms of membership value. 
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7.2 Future directions 

In this thesis, a number of algorithms are developed and all of these algorithms are 

dependent on the EMD method. At first, instantaneous amplitude, instantaneous phase 

and IF is obtained by applying the DHT method to the IMFs. These IMFs are obtained 

through the decomposition of the signal using EMD method. Then, HS is generated 

using instantaneous amplitude and IF. Time-varying mean frequency is derived using 

instantaneous amplitude and IF. Moreover, all the parameters in time-varying mean 

frequency domain and IMF-based time domain are determined on the basis of EMD 

method. Therefore, it is evident that all the algorithms are exploiting EMD method in 

any way. Improving the EMD method could push the whole process from different 

angles. Hence, further improvement is expected in EMD method by implementing the 

EMD process as a perceptually tuned filter bank instead of simple EMD. Ensemble 

empirical mode decomposition (EEMD) could be an alternative to the simple EMD 

method. EEMD is used to resolve the mode mixing problem of EMD. Turning tangent 

empirical mode decomposition (2T-EMD) could be another alternative to the EMD 

method. Efficient representation of the HS could be given through the generation of a 

huge number of IMF using 2T-EMD method. 

Some well-known parameters are determined from the segments in time-varying 

mean frequency domain and IMF-based time domain in this study. Discovering signal 
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dependent gas bubble signal characteristics and utilizing those characteristics in the 

signal segmentation algorithm could provide better accuracy in the extraction of the 

segments representing gas bubble signals. More sensitive parameters should be 

extracted and exploited to the gas bubble signal detection to make the detection process 

very much effective. 

It is easily perceived that the proposed algorithms can detect the gas bubbles for 

grade I, II and III signals. However, for grade IV signal our proposed algorithm is not 

adequate. More advanced algorithm is required to the detection of grade IV gas bubble 

signals. The automatic detection of search region for all the grades of signals, grade IV 

gas bubble signal detection and size estimation of gas bubbles for all the grades of 

signals are the main concern for our future works. Furthermore, there is no reported 

physiological meaning for IMFs regarding gas bubble signal. This is a research area that 

should be pursued in the future.   
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