Study on fabrication of oxide high temperature superconducting films using precursors

2006

Kohichi Yokoyama

The fabrication of REBa₂Cu₃O_y (RE123) superconducting films from precursors prepared by metal-organic deposition (MOD) technique and BaF₂ process using electron beam deposition method has been studied. These techniques are suitable for mass production of RE123 superconducting wires from a point of view of high reproductivity and low-cost production.

In order to select the most suitable RE123 material for superconducting applications, RE123 (RE = Yb, Er, Ho, Dy, Gd, Eu, Sm, Nd, La) films were prepared by the MOD technique using naphthenates as starting materials and the crystal orientation behavior and superconducting properties were investigated. Yb123, Er123 and Gd123 films grown on SrTiO₃ substrates showed T_c of 89.5 K, 89.7 K and 91.8 K, respectively. Gd123 films showed in-plane aligned c-axis orientation at wider temperature range than the other RE123 films. Therefore, the Gd123 film is expected to be a primary candidate in the RE123 films prepared by MOD technique because of high T_c and wide firing temperature ranges.

Gd123 films were also successfully fabricated by the BaF₂ process without introduction of water vapor, which showed T_c of 93.4 K and J_c of 2.12 MA cm⁻². It was found that the Gd123 films had wider process window than Y123 films in the BaF2 process. The BaF₂ process without water vapor has advantages for industrial production from a viewpoints of fewer control parameters and high uniformity of superconducting properties.