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ABSTRACT 

Breast cancer is one of the most widespread types of cancer in the world. The key factor 

in treatment is to reliably diagnose the cancer in the early stages. Moreover, currently used clinical 

diagnostic modalities, such as X-ray mammography, MRI, and ultra-sound are limited by cost and 

reliability issues. These limitations have motivated researchers to develop a more effective, low-

cost diagnostic method and involving lower ionization for cancer detection. Recently, studies on 

the early detection of breast cancer by microwave imaging have attracted significant interest 

among researchers over the last decade, due to the high dielectric properties contrast between the 

cancerous and the normal tissue. In this thesis, tomography based microwave imaging is proposed 

as a method for early breast cancer detection. This imaging system has advantages such as low 

cost, being non-invasive and easy to use, with quantitative images which provides information 

directly correlated to the composition of the examined object, thus has a good potential in early 

cancer detection.  

Microwave tomography is an inverse scattering problem which is formalized by 

determine the position and complex permittivity distribution of the unknown object from the 

measured scattered field. The image reconstruction process in microwave tomography involves 

forward problem and inverse problem. For the forward problem, Method of Moment (MoM) is 

used to obtain the measurement scattering data. For the inverse problem, two approaches were 

proposed to solve the non-linear inverse scattering method, i.e., Newton-Kantorovich and 

Distorted Born Iterative Method (DBIM). In addition, three types of solving techniques to reduce 

the ill-posedness and perform more stable solution were also introduced. The ill-posed of non-

linear problem can be avoided by choosing appropriate solving techniques, considerable number 

of unknowns used in the analysis region, and the use of a priori information. 
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In microwave tomography, it is necessary to increase the amount of diverse observation 

data to obtain accurate image reconstruction of the complex permittivity distribution of the 

imaging area. Several methods were considered, such as increase the number of antennas, use 

multi-frequency method and implement the multi-polarization method. In this thesis, the multi-

polarization approach has been proposed as a suitable technique for the acquisition of a variety of 

observation data. A compact-sized imaging sensor using multi-polarization approach for accurate 

image reconstruction is presented. While the effectiveness of employing multi-polarization has 

been confirmed, the physical considerations related to image reconstruction have not been 

investigated. An analysis of the correlation coefficient of the received data of adjacent antennas 

was performed to interpret the imaging results. Numerical simulation results demonstrated that 

multi-polarization can reconstruct images better compared to single polarizations owing to its low 

correlation coefficient. For this reason, the correlation coefficient may represent a viable parameter 

for image reconstruction in microwave tomography aimed at breast cancer detection. 
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CHAPTER 1 

INTRODUCTION 

1.1 Research Background 

According to the World Health Organization (WHO), breast cancer is the most common 

cancer among women worldwide with over 1 million cases [1]. In Japan, the breast cancer 

incidence and associated mortality rates of women are lower compared to Western countries. 

However, it is one of the leading causes of cancer deaths among women, and the incidence rate 

has increased since 1975, regardless of age group [2][3]. 

Figure 1.1 shows the trends in age-adjusted incidence rate of breast cancer in Japan for 

year 1985 – 2010. The incidence rate of breast cancer is observed to increase gradually towards 

year. It has been reported that the projection of breast cancer incidence in year 2015 accounts for 

21.2% of all new cancers in Japan with an age-standardized rate of 89.4 per 100 000 women [3]. 

Therefore, an early detection of breast cancer is important because it helps decrease the mortality  

 

 

Figure 1.1 Trends in age-adjusted incidence rate of breast cancer [3] 
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rate of breast cancer. Meanwhile, Figure 1.2 shows the trends in age-specific incidence rate for 

breast cancer between year 1980 and 2011. There is a rapid increase in incidence rate among 

middle and old age groups, especially 45 – 64 years old. In 2011, a clear peak was observed in this 

age group. Correspondingly, the Japan national breast screening program was launched in 2000 

pursuant to the Ministry of Health, Labor and Welfare of Japan (MHLW) notification (Notification 

Roken No 65). Another notification (Notification Rorohatsu No. 0427001) was introduced for 

Japanese women aged 40–49 years to undergo breast cancer screening from 2004 [4]. 

 

 

Figure 1.2 Trends in age-specific incidence rate of breast cancer (1980, 2010) [3] 

 The most widely used breast cancer screening are Clinical Breast Examination (CBE), X-

ray Mammography, Magnetic Resonance Imaging (MRI) and Ultra-sound Imaging. Today, in most 

developed countries, mammography is widely used and in general an accepted method for breast 

cancer screening. However, mammography modalities suffer from several limitations, such as 

ionizing X-rays, and painful breast compression. It also reported that mammography provides false 

rate in detection, especially for younger women due to dense breast [4]. The burden of breast 
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cancer for Japanese women aged 40 – 49 years cannot be ignored despite the absence of studies 

evaluating mortality reduction using mammography, particularly from the perspective of the 

balance of benefits and harms [5]. 

A non-ionizing imaging methods exists today are MRI and Ultrasound Imaging. MRI has 

been shown to have a high sensitivity, but its high cost and the time consuming diagnosis are major 

shortcomings. Whereas the diagnosis of cancer using ultrasound is dependent on the skills of 

physician, although it is a cheaper way. Moreover, these techniques are used as a complementary 

for mammography to verify the malignant tissues, thus not suitable for large screening programs. 

From this discussion, it is clearly that there is a high need of alternative imaging modalities in 

order to decrease the global mortality related to breast cancers.  

Recently, studies on the early detection of breast cancer by microwave imaging (MWI) 

have attracted considerable interest among researchers [6]. This imaging system has advantages 

such as low cost, being non- invasive and easy-use, provides high image resolution and thus with 

potential for early cancer detection. 

Microwaves and millimeter waves have been used extensively to image dielectric bodies. 

The relatively long wavelengths (from a millimeter to a meter) allow for penetration into many 

optically opaque mediums such as living tissues, wood, plastics, concrete, soil, etc [6]. When the 

human body or a biological system is illuminated by an electromagnetic wave, an electromagnetic 

field is induced inside the body and an electromagnetic wave is scattered externally by the body. 

Since the human body or a biological system is an irregularly shaped heterogeneous conducting 

medium with frequency-dependent permittivity and conductivity, the distribution of the internal 

electromagnetic field and the scattered electromagnetic wave will depend on the body’s 

physiological parameters and geometry, as well as the frequency and polarization of the incident 

wave [7].  
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A clinical study on behavior of electromagnetic field using normal breast were done by 

researchers from Dartmouth College, Hanover USA. These results illustrate that clinical 

microwave tomographic imaging of the breast is feasible and that the images appear to produce 

clinically relevant information on breast tissue composition [8]. Furthermore, researchers from 

University of Wisconsin proved that microwave imaging has a strong potential to detect cancer, 

due to the high dielectric contrast is observed between malignant breast tumor tissues and fibrous 

and glandular breast tissues [9][10]. These findings are very interesting knowledge as a platform 

to establish new imaging modalities using microwaves applied toward breast cancer detection.  

 

1.2 Problem Statement 

The application of microwaves in biomedical imaging and diagnostics, however, remains 

a field with many uncharted territories. The motivation for major screening programs is the strong 

correlation between the outcome of a breast cancer and its size at the time of detection. The two 

major approaches of microwave imaging today are tomographic methods, where cross-sectional 

slices of the dielectric properties is generated. Whereas the second approach is radar-based 

imaging where strong scatterers is found inside an object. The radar approach is not issued in this 

thesis, but a recent view of the techniques is published by Hagness et. al [10][11][12] and 

Kuwahara et. al. [13]–[18]. 

They have verified their radar approach in an experimental setup using an ultra-wideband 

antenna with impressive results. However, the screening method using ultra-wideband (UWB) 

radar require further improvements. Furthermore, in a realistic situation it will be very hard to 

diagnostic a cancer because the method just obtains qualitative images. A quantitative method 

must be used for a cancer detection. The difference between a qualitative and a quantitative image 

is that the quantitative image gives information directly correlated to the dielectric properties. 
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The microwave tomography (MWT) is proposed as an alternative imaging to UWB radar. 

Microwave tomography is based on the non-linear inverse scattering problem. As an example of 

inverse problem, let 𝐺 and 𝐹 be Hilbert spaces, and 𝐿 is a continuous linear operator between 

them. Let 𝑔 ∈ 𝐺  and 𝑓 ∈ 𝐹 , where 𝑔 = 𝐿𝑓 . The forward problem is to compute 𝑔  with 

given 𝑓. Whereas the inverse problem is to compute 𝑓 with given 𝑔. Figure 1.3 illustrates the 

microwave inverse scattering problem. The object with unknown dielectric properties is 

surrounded by an array of antenna. The objective of microwave inverse scattering problem is to 

determine for the unknown dielectric profile of the object based on the measured return signals 

from the antennas.  

 

 

Figure 1.3 The microwave inverse scattering problem [19] 

The image reconstruction in microwave tomography is an example of an inverse 

scattering problem that is typically ill-posed and nonlinear. This can dramatically degrade the 

accuracy of a computation and the final results. In order to achieve accurate image reconstruction, 

it is necessary to obtain diverse measurements data. Several methods must be considered, such as 

increase the number of antennas, use multi-frequency method and implement the multi-

ε? σ? 

Antenna Object 
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polarization method. The image reconstruction algorithm is then developed to determine the 

dielectric profile of unknown object. The electrical properties of the various tissues in the human 

body vary widely, thus strongly heterogeneous. The tissue heterogeneity is one of the problems for 

the algorithms, but is not issued in this thesis. 

 

1.3 Objective of Study 

In this thesis, tomography-based microwave imaging is proposed as an early breast cancer 

detection method. In order to achieve this, the main objectives in this thesis are as follows: 

1. To study nonlinear inverse scattering problems, 

2. To develop a reconstruction algorithm to solve the nonlinear inverse scattering 

problems,  

3. To design a compact-sized antenna array configurations for the microwave imaging 

system, 

4. To model an imaging object that mimicking human breast tissue for breast cancer 

detection, 

5. To investigate the impact of polarizations for accurate image reconstructions, 

6. To investigate the correlation of coefficient of adjacent antennas as a viable parameter 

in design considerations. 
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1.4 Novelty 

The novel aspects of the present work are as follows: 

1. Tomography-based microwave imaging has the potential to detect breast cancer 

because it provides quantitative results, which is directly correlate to the location 

and dielectric properties of imaged objects. 

 

2. Microwave tomography is an example of nonlinear inverse scattering problem, 

which is typically ill-posedness. This can be reduced by including a priori 

information, appropriate regularization parameter, and considerable number of 

unknowns used in the analysis region. The suitable implementation of inverse 

problem approach is also the key factor in inverse scattering problem. 

 

3. The multi-polarization method has been proposed as a suitable technique for the 

acquisition of a variety of observation data. A compact-sized imaging sensor 

utilizing multi-polarization approach in microwave tomography imaging is 

presented for breast cancer detection.  

 

4. While the effectiveness of employing multi-polarization to reconstruct images has 

been confirmed, the physical considerations related to image reconstruction have 

not been investigated. An analysis of the correlation coefficient of the received data 

of adjacent antennas was performed to interpret the imaging results. The correlation 

of coefficient of adjacent antennas may represent a viable design parameter for 

image reconstruction in microwave tomography. 
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1.5 Thesis Outline 

This thesis consists of 6 chapters stated as follows: 

 

In Chapter 2, a brief overview of issues related to breast cancer is presented. These include 

the physiology of the cancerous breast, currently available breast cancer screening modalities, and 

microwave imaging for breast cancer detection. 

 

In Chapter 3, microwave tomography for early detection is introduced. The principles and 

important parameters in forward problem and nonlinear inverse scattering problems is discussed. 

The challenges in microwave tomography are also outlined. 

 

 In Chapter 4, the microwave tomography system is explained. Two antenna array 

configurations, with a single polarization and multi-polarization is introduced. A hemisphere 

breast models that mimicking human breast tissue are also proposed.  

 

 In Chapter 5, the results of numerical simulations are presented. These results are divided 

according to corresponding inverse problem approach and configuration model from Chapter 4. 

 

 In Chapter 6, the conclusions of the study and suggestions for future work are discussed. 
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CHAPTER 2 

LITERATURE REVIEW 

2.1 Overview 

This chapter discusses the background of breast cancer in regard to the physiology of 

breast, and current breast cancer detection modalities. This chapter provides essential and 

important background information for the following chapters. Furthermore, the final section 

focuses on the introduction of microwave imaging for breast cancer detection. 

2.2 Physiology of Breast 

2.2.1 Anatomy 

The anatomy of the normal breast and its surrounding tissues are illustrated in Figure 2.1 

[20]. In general, the breast lies over a pectoral muscle and composed of skin, adipose (fat), 

connective tissue and glandular tissue. The proportions of fat, connective and glandular tissue vary 

between people, age and according to physiological periods such as menstrual cycle and pregnancy.  

A tumor or neoplasm is formed by a lump of tissue which is composed of abnormally 

growing cells called cancerous cells. The cancerous cell continues to grow and divide without 

restraint, eventually spreading throughout the body, and progressively leading to death. Tumors 

can be mainly classified as benign and malignant. A benign tumor grows with a controllable speed, 

and remains localized to its original location. Therefore it neither invades surrounding normal 

tissue nor spreads to other body sites. In contrast, a malignant tumor invades and destroys healthy 

cells and may grow at a high rate or spread to other adjacent tissues and organs. Only malignant 

tumors are properly considered cancers [21].  

Breast cancer refers to a malignant tumor that has developed from cells in the breast. It is 
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a common cancer in women which usually originates from the lobules or ducts, and can spread 

through the lymph system [22]. Age, genetics, family history or environmental effects are the risk 

factors of breast cancer. Commonly, the surrounding tissues are pulled toward the cancerous region, 

thus resulting in distortion. Therefore, tissues usually become denser when diseased. Higher 

density is usually an indicator of malignancy. Breast cancer generally have a more irregular shape 

than benign tumors [23]. 

 

 

Figure 2.1 Anatomy of normal breast [20] 

2.2.2 Dielectric Properties 

Electromagnetic based microwave imaging for cancer detection is based on the dielectric 

properties of breast tissues. The electrical properties of the various tissues in the human body vary 

widely. Organs consist of a large variety of tissues and are thus strongly heterogeneous. 

When radiofrequency (RF) energy is transmitted at boundaries separating regions of 

different biological materials, the electromagnetic properties of the electromagnetic wave 

interacting with a medium mainly depend on its penetration depth and transmission coefficient 

[24]. Tissues with high water content and tissues with low water content have different penetration 
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depth and transmission coefficient. For an example, the penetration depth of RF plane waves for 

low water content tissues is about 5 times greater than that for high water content tissues [24]. 

Typical values of the penetration depth for human tissue of different water content are given in 

Figure 2.2 [25]. The penetration depth also depends on the wavelength, and its dielectric properties.  

 

 

Figure 2.2 Typical values of depth of penetration versus frequency [25] 

Many studies have revealed that the content of water in a tissue determines its relative 

permittivity [26][27][28]. From the studies, tissues with high water content tissues, such as cancer 

(or tumor), muscle and most organs, have higher relative permittivity than those with low water 

content tissues such as bone and fat. The relative permittivity of a tissue is related to the storability 

of electromagnetic energy in the tissue while the conductivity of the tissue indicates the attenuation 

of microwave energy when the microwave interacts with it. 
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To illustrate a typical tissue distribution in the human breast, a slice of a magnetic-

resonance (MR) image is shown in Figure 2.3. White areas show mostly fatty tissue while darker 

regions correspond to mostly fibro glandular tissue. Together with the significant loss, this makes 

the propagation environment very complicated. Tissue heterogeneity is a major problem for the 

algorithms that process the microwave data to produce images [6]. 

 

 

Figure 2.3 A slice of a MR breast image in the transverse plane [6] 

The breast cancer detection based on microwave imaging relies on large differences in 

electromagnetic properties between normal and malignant tissues. A brief description of the 

definition and widely used models for the dispersion of the tissues is described. In quantitative 

microwave imaging, considering the biological tissues as dielectrics, the dielectric properties is 

reconstructed regarding the differences in the complex permittivity, defined by Equation (2.1). 

𝜀∗ = 𝜀𝑟 + 𝑗
𝜎

𝜔𝜀0
                             (2.1) 

Where 𝜀𝑟 is the relative permittivity and 𝜎 is the conductivity of examined object, 𝜀0 is the 

free-space permittivity, and 𝜔 is the angular frequency.  

The electromagnetic properties of breast tissue in different frequency ranges have been 

Fatty tissue 

Fibro-glandular tissue 
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studied. Gabriel et al. made a major review of measured dielectric properties together on healthy 

human tissues for frequencies between 10 Hz – 100 GHz [26][27][29]. In the study, the basic and 

well known Debye model in Equation (2.2) is introduced. This equation is extended to Cole-Cole 

expression to model the structure and composition of biological tissues, defined in Equation (2.3). 

𝜀∗(𝜔) = 𝜀∞ +
𝜀𝑠−𝜀∞

1+𝑗𝜔𝜏
                          (2.2) 

𝜀∗(𝜔) = ε∞ +
∆𝜀

1+𝑗𝜔𝜏
+

𝜎𝑠

𝑗𝜔𝜀0
                      (2.3) 

where, ε∞ is static frequency permittivity constants, and 𝜎𝑠.is static conductivity. The magnitude 

of the dispersion is  ∆𝜀 = ε𝑠 − ε∞ . The relaxation time constant 𝜏 is assumed to be spatially 

invariant and usually taken between 15 – 17 ps. The approximate properties of human tissues 

determined by Equation (2.3) for frequency of 2.5 GHz are listed in Table 2.1 [26][27][29]. 

Table 2.1 Approximate properties of different human tissues at 2.5 GHz 

Tissue Blood Bone Adipose Muscle Skin (Dry) Tendon 

𝜺𝒓 56 – 60 12 4 – 5 50 – 55 38 42 

𝛔 [𝐒 𝒎⁄ ] 2.5 0.4 0.07 – 0.1 1.8 – 2.2 1.5 1.8 

 

 Furthermore, with focus on the breast tumor detection, the female breast tissues have been 

studied. A clinical study on behavior of electromagnetic field using normal breast were done by 

Meaney et al. The study reveals that the heterogeneity in the microwave property distribution 

within the breast is significant, especially as breast density increases [8]. Meanwhile, ex vivo 

measurement of fresh human malignant and normal breast tissues has been performed by several 

groups. Lazebnik et al. reported the most comprehensive examination of the dielectric properties 

of normal, benign and malignant breast tissues. The samples were histological categorized in terms 

of the percentage of adipose (fat), glandular and fibro glandular tissue present in the sample. The 
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dielectric properties contrast between normal and malignant breast tissues across 0.5 MHz – 20 

GHz range have been found to be 10:1 contrast [30]. They also concluded that the dielectric 

properties of breast tissue were primarily a function of the adipose content of the tissue [28].  

The data ranges of values of dielectric properties for modelling adipose, normal tissues, 

benign tumor and malignant tumors at 3.2 GHz is suggested by Campbell et. al. and shown in 

Table 2.2. Normal breast tissue is referred as a mixture of glandular and connective tissue [31]. 

Above studies proving that significant differences in the dielectric properties of breast tissues are 

sufficient for the microwave image.  

Table 2.2 Measured dielectric properties of ex vivo female breast at 3.2 GHz 

Tissue 

type 

Normal tissue Adipose Tumor 

(Benign) 

Tumor 

(Malignant) 

𝜺𝒓 9.8 – 46 2.8 – 7.6 15 – 67 9 – 59 

𝛔 [𝐒 𝒎⁄ ] 3.7 – 34 0.5 – 2.9 7 – 49 2 – 43 

 

2.3 Breast Cancer Screening 

The goal of breast cancer screening is to detect occult breast cancer in a population of 

women [32]. The most commonly and widely used clinical diagnostic modalities for breast cancer 

are Clinical Breast Examination (CBE), X-ray Mammography, Magnetic Resonance Imaging 

(MRI) and Ultra-sound Imaging [33]. The principles of these modalities are summarized as follows. 

2.3.1 Clinical Breast Examination (CBE) 

CBE is an important part of early detection and it is recommended that CBE be part of a 

periodic health examinations [32]. In Japan, CBE alone for breast cancer screening have been 
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performed for many years. A CBE is performed by a healthcare professional who checks the entire 

breast, underarm, and collarbone area for any lumps or abnormalities. However, it is impossible to 

detect tumors that cannot be palpated with CBE, thus resulting in a low screening sensitivity. 

Moreover, no Randomized Controlled Clinical (RCT) trials of breast cancer screening have been 

carried out to validate the performance of this technique. There have been many reports 

demonstrating that CBE alone shows no efficacy in reducing mortality of breast cancer [4].  

2.3.2 X-ray mammography 

Currently X-ray mammography is the most effective method of detecting breast cancer. 

X-ray Mammography uses X-rays as the examination wave to pass through the breast which is 

compressed by two plates. Images of the breast are then recorded on film for diagnosis. This 

process is efficient in terms of time but is quite discomfort due to the breast compression. Moreover, 

the ionizing radiation involved are hazardous to patients [34]. For most diagnostic requirement, 

the resulting images are sufficient in terms of spatial resolution, but not promising for the dense 

breast tissue, which can decrease the sensitivity, and thus the accuracy of mammography [35]. 

Mammography screening for breast cancer is recommended for women aged 50 years or older due 

to their breasts tend to be fattier and are easier to evaluate. Mammography can be challenging to 

perform in young women because their breasts are full of milk glands and tend to be dense [36]. 

Since 2000, a combination of clinical breast examination (CBE) and mammography has been 

recommended to Japanese communities as population-based screening [4]-[5]. 

2.3.3 Magnetic Resonance Imaging (MRI) 

Magnetic Resonance Imaging (MRI) utilizes magnets to generate a very strong magnetic 

fields for the creation of a detailed cross-sectional images of tissue structure [37]. The patient lies 

on an examination table with several small scanner devices placed around breast to be examined. 
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MRI has been shown to have a high sensitivity and able to detect cancers accurately that had been 

overlooked by the other methods [4]. However, its high cost and the time consuming diagnosis are 

major shortcomings. Although MRI are shown to be efficacious for screening, the tests are limited 

only to those women at increased risk and not beneficial for women at lower risk [32]. Recently, 

a revised guidelines for MRI breast cancer screening as an adjunct to mammography was issued 

by the American Cancer Society (ACS) [37]. 

2.3.4 Ultrasound Imaging 

Ultrasound is an imaging test that sends high frequency sound waves (> 20,000 Hz), 

through the breast and converts them into images on a screen. The radiation in this frequency range 

is not harmful to patients. This method is cheaper than MRI and less invasive compared to 

mammography. Moreover, it is portable and the resulting images are in real-time screening [38]. 

Hence, the diagnosis of cancer is dependent on the skills of doctor or physician who interpreted 

the results. It may be difficult to detect and distinguish fluid-filled cyst and solid cancerous tissue. 

Ultrasound is used to complement other screening tests and recommended for patients in whom 

mammography and palpation have failed to detect abnormalities [39]. 

2.4 Microwave Imaging 

Although the efficacy of aforementioned detection modalities have been demonstrated, 

an alternative to current breast cancer screening methods is required to overcome the limitations. 

One of the most promising emerging breast imaging technologies is Microwave Imaging (MWI). 

The major reason for this is the significant differences in dielectric properties between cancerous 

tissues and normal breast tissues, as explained in Section 2.2.2. Moreover, MWI for breast 

screening is non-mammographic imaging technologies, and has advantages which are nonionizing 

(safe), noninvasive (comfortable), less painful, and potentially low cost. The goal of MWI is to 
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image all the breast tissue with high contrast and high resolution with as little noise as possible to 

permit the detection and diagnosis of breast cancer at as small size and early stage as possible. 

A microwave is heavily influenced by diffraction. Therefore, MWI obtaining images of a 

biological object’s material properties by measuring the object’s influence on an applied wave 

(either acoustic or electromagnetic), depicted in Figure 2.4. In microwave case, the contrast in 

dielectric properties is imaged.  

 

 

Figure 2.4 Formulation of the scattering properties in microwave imaging 

Microwave imaging systems for breast cancer detection can be classified into passive and 

active microwave imaging, as shown in Figure 2.5. Passive microwave imaging is based on the 

thermography, which is high temperature difference between the cancerous and healthy tissues 

when the breast is illuminated by microwave radiation. The received microwave signals often used 

to map the temperature distribution for diagnosis. Meanwhile active microwave imaging refers to 

a system that irradiate electromagnetic waves to the imaging region and measure the resulting 

electromagnetic fields [25], [40], [41]. This approach relies on the large difference in dielectric 

properties between healthy and malignant breast tissues [13][14]. 
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Figure 2.5 Microwave imaging systems for breast cancer diagnosis [41] 

Two active microwave imaging methods have been proposed, namely ultra-wideband 

(UWB) radar based imaging and microwave tomography. In a radar-based approach, the goal is to 

generate an image of the relative scattering strength, thus only focuses on imaging the cancer rather 

than the whole breast. Whereas in microwave tomography approach, the goal is to quantitatively 

reconstruct the dielectric parameters in the imaging region, in other words, attempts to reconstruct 

a map of all of electrical properties of the breast.[42]. The difference between a qualitative and a 

quantitative image is that the quantitative image provides information directly correlated to the 

internal structure and composition of the examined object, which is necessity in biomedical and 

geo-surveying applications. 

Recently, studies on the early detection of breast cancer by active MWI have been 

proposed over the years and have attracted considerable interest among researchers [6]. The initial 

and major contribution in active MWI for breast cancer screening has been done by Meaney et. al. 

using tomographic approach [43]–[45]. Meanwhile the review using a radar approach are 

published by Hagness et. al. [10]–[12]. 
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2.4.1 Ultra-wideband (UWB) Radar 

Time-domain UWB radar techniques are based on radar principles in which one seeks to 

determine the location-of-origin of the scattered time-domain signal [25]. UWB pulses are 

transmitted from antennas at different locations near the breast surface and the backscattered 

responses from the breast are recorded, from which the image of the backscattered energy 

distribution is reconstructed coherently [46]. 

Kuwahara et al. have developed a multi-static UWB radar measurement system for early 

detection of breast cancer among Japanese women and conducted clinical experiments [13]–[18]. 

Figure 2.6 shows the developed microwave mammography system. Three different sensors with 

different number of antennas were prepared to accommodate the breast size. The measurement 

was taken with limited bandwidth from 4 – 9 GHz. The influence of surrounding structures is 

avoided by immersing the antenna and imaged object into a lossy matching fluid. 

From the clinical experiments, the image reconstruction results demonstrated that the 

system can detect cancer which has a clear boundary and isolated from fibro glandular tissue. 

However, if the boundary of the fibro-glandular tissue and the cancer is irregular, the system was 

unable to reconstruct the shape of the cancer correctly in some cases because of the complicated 

multipath propagation in the breast. Thus, the screening method using UWB radar proposed by 

Kuwahara et al. can be considered incomplete and require further improvements.  
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Figure 2.6 Microwave mammography with different sensors [13][14] 

2.4.2 Microwave Tomography 

The word tomography comes from the Greek words "to slice" (tomos) and "to write" 

(graphein). This term comes to microwave imaging from the image processing algorithms and is 

also known from magnetic resonance tomography (MRT) and X-ray computed tomography (CT), 

where the image of the internal structures of a body is represented slice by slice [41].  

In microwave tomography (MWT), a number of antennas are located around the unknown 

object, as shown in Figure 2.7. The examined object is successively illuminated by transmitting 

antenna and the resulting electromagnetic field is measured by the receiving antennas. The 

measurement data are related to the scattered field resulting from the interaction between the 

known incident field and the scatterers inside the imaging region [47]. The measurement data is 

then used with an appropriate nonlinear inversion algorithm to reconstruct the dielectric properties 

distribution of the object, so as to generate quantitative images [24],[25][48].  
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Figure 2.7 Breast screening by microwave tomography [41] 

The imaging system with a clinical prototype to perform quantitative images of breast 

phantoms was developed by Meaney et. al. [49]. Furthermore, Kuwahara et al. currently 

developing a microwave tomography (MWT) system for pathology diagnosis to overcome the 

limitations in previous developed UWB radar imaging [50][51][52]. Microwave tomography is 

most interest in this thesis and will further discussed in Chapter 3. 
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CHAPTER 3 

MICROWAVE TOMOGRAPHY 

3.1 Overview 

Tomography is a voxel-based problems, and is based on the inverse scattering problem. 

It is an iterative technique can be used to reconstruct complex dielectric properties of objects from 

measurements of the field (either acoustic or electromagnetic) scattered when the object is 

illuminated by known sources [53]. This chapter discusses the background of MWT in regard to 

the physical description, the numerical forward problem, and the iterative non-linear inverse 

scattering. Furthermore, the challenges in tomography as the motivation of research are also 

outlined. 

3.2 Physical Description 

Figure 3.1 shows the geometry for a two-dimensional (2-D) case, where the transmitter 

can be modeled by an incident plane wave or a source of cylindrical waves. The receiving points 

may be arranged along a line behind or along a circle around the object [54]. 

Consider an inhomogeneous dielectric objet 𝑆 of arbitrary shape and unknown complex 

permittivity 𝜀∗(𝑟), which consists of relative permittivity 𝜀𝑟(𝑟) and conductivity 𝜎(𝑟). The 

object is surrounded by a background medium 𝑆𝑏 of complex permittivity 𝜀𝑏(𝑟), and antenna 

array located outside of volume 𝑆. In Figure 3.1, ε(𝑥, 𝑦), 𝜀𝑒𝑥𝑡 and 𝑒𝑙
𝑖 are defined with 𝜀∗(𝑟), 

𝜀𝑏(𝑟), and 𝑒𝑣
𝑖 , respectively for 3-D application and further description. In sequence, each antenna 

transmits an electromagnetic signal into the imaging region, while the transmitter itself and other 

antennas in the array act as receivers. Then the scattered electric field is measured, which is the 

result of the interaction between the unknown object and incident field from the transmitting point. 
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General Gauss-Newton linearized solutions can be used to solve electromagnetic 

problems in 2-D and 3-D. The procedure are (1) forward problem (2) calculation of sensitivity 

matrix (Jacobian), and (3) solution of a large matrix in inverse problem [55]. 

 

        

(a) Linear (planar)    (b) Circular 

Figure 3.1 Imaging system geometries [54] 

3.1 Forward Problem 

Solving the forward problem (or known as direct problem) gives the computed field at 

the receiving points. Several different methods can be used to implement the wave equation into 

the forward problem, including the Method of Moment (MoM) and Finite-Difference Time-

Domain (FDTD). MoM is the conventional approach for solving volume integral equations in the 

frequency domain. Here, the integral Helmholtz formulation using MoM will be discussed. 

I.  Wave Equation 

A common wave equation is the scalar Helmholtz’s equation describing the time-

harmonic electric field in a situation, where the incidence field is a vertically polarized and the 

object properties is homogenous along the vertical z-axis. The problem is then transformed into a 

2-D problem, defined by Equation (3.1) [47][56].  
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(∇2 + 𝑘2(𝑟))𝑒(𝑟) = 0                        (3.1) 

where 𝑘  is the wavenumber of the electromagnetic (EM) wave containing the dielectric 

properties of the medium of propagation, and 𝑒(𝑟) is the total electric field. 

II.  Formulation of Integral Equation 

The formulation used in this thesis is based on the integral formulation of the scalar 

Helmholtz’s equation using MoM. The total field 𝑒𝑣(𝑟) in Equation (3.1) is assumed to be the 

sum of the incident field 𝑒𝑣
𝑖  (without an object) and the scattered field 𝑒𝑣

𝑠 (caused by the object), 

according to Equation (3.2). 

𝑒𝑣(𝑟) = 𝑒𝑣
𝑖 (r) + 𝑒𝑣

𝑠(𝑟)                       (3.2) 

where the notation 𝑣 indexing the total number of views which is a multi-view process by rotating 

the receivers. The incident field 𝑒𝑣
𝑖  is assumed as the homogeneous solution of the Helmholtz’s 

equation without object. Meanwhile, the scattered field 𝑒𝑣
𝑠 is the solution of the inhomogeneous 

Helmholtz’s equation defined in Equation (3.3). In this case the object is described as a number of 

small source points generating the scattered field defined by the Dirac delta function in the right 

side of Equation (3.3). 

(∇2 + 𝑘𝑏) 𝐺(𝑟, 𝑟′) = −𝛿(𝑟 − 𝑟′)                  (3.3) 

Note, that the index 𝑟 represent the observation points (i.e. the receiving antennas), meanwhile 

𝑟′ represents the source point inside the object region. The term 𝐺(𝑟, 𝑟′) represent the three-

dimensional (3-D) free-space Green’s function, and 𝑘𝑏 is the wavenumber of the background 

medium. The Dirac delta function can be defined as the equivalent currents 𝐽𝑣 inside the object 

generated by the contrast of the complex permittivity 𝐶(𝑟′) between the object and the total field 

𝑒𝑣(𝑟′) inside the object region as defined in Equation (3.4).  

𝐽𝑣 = 𝑒𝑣(𝑟
′)𝐶(𝑟′)                            (3.4) 

Where   𝐶(𝑟′) = 𝑘2
𝑜𝑏𝑗(𝑟

′) − 𝑘𝑏
2                         (3.5) 
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and   𝑘2
𝑜𝑏𝑗(r

′) = 𝜔2𝜇0𝜀
∗(𝑟′)                        (3.6) 

𝑘𝑏
2 = 𝜔2𝜇0𝜀

𝑏                           (3.7) 

𝜇0 is the permeability of free space, and the difference of the two wavenumbers in Equation (3.6) 

and (3.7) is the complex permittivity 𝜀∗ of the object and the background medium 𝜀𝑏
∗ [57]. The 

contrast 𝐶(𝑟′) over volume 𝑆 with respect to the known 𝜀𝑏
∗ may also defined as 𝜀∗(𝑟′) − 𝜀𝑏

∗  

if 𝑟′ ∈ 𝑆. By inserting Equation (3.4) into (3.3) gives the solution of the scattered field 𝑒𝑣
𝑠 on the 

receivers in form of a convolution in the integral formulation as written Equation (3.8).  

𝑒𝑣
𝑠(𝑟) = ∬ 𝐺(𝑟, 𝑟′) 𝑒𝑣(𝑟

′) 𝐶(𝑟′)   𝑑𝑟′
𝑆

                       (3.8) 

By inserting Equation (3.8) in (3.2) gives the following linear system for the total field. 

𝑒𝑣(𝑟) = 𝑒𝑣
𝑖 (𝑟) + ∬ 𝐺(𝑟, 𝑟′) 𝑒𝑣(𝑟

′) 𝐶(𝑟′)   𝑑𝑟′
𝑆

                (3.9) 

Equation (3.8) and (3.9) define a forward scattering problem when the object of contrast 𝐶 is 

given besides the incident field 𝑒𝑣
𝑖  in 𝑆 and the background medium complex permittivity 𝜀𝑏

∗, 

and if the scattered field 𝑒𝑣
𝑠 is unknown [54]. The inner product 𝐺(𝑟, 𝑟′) ∙ 𝑒𝑣(𝑟′) in Equation 

(3.9) may represented as follows [7]: 

𝐺(𝑟, 𝑟′) ∙ 𝑒𝑣(𝑟′) = [

𝐺𝑥𝑥(𝑟, 𝑟
′) 𝐺𝑥𝑦(𝑟, 𝑟′) 𝐺𝑥𝑧(𝑟, 𝑟

′)

𝐺𝑦𝑥(𝑟, 𝑟
′) 𝐺𝑦𝑦(𝑟, 𝑟′) 𝐺𝑦𝑧(𝑟, 𝑟

′)

𝐺𝑧𝑥(𝑟, 𝑟
′) 𝐺𝑧𝑦(𝑟, 𝑟′) 𝐺𝑧𝑧(𝑟, 𝑟

′)

] [

𝑒𝑥(𝑟
′)

𝑒𝑦(𝑟′)

𝑒𝑧(𝑟
′)

]        (3.10) 

Let  𝑥1 = 𝑥          𝑥2 = 𝑦          𝑥3 = 𝑧 

Then, 𝐺𝑥𝑝𝑥𝑞
(𝑟, 𝑟′) is given by 

𝐺𝑥𝑝𝑥𝑞
(𝑟, 𝑟′) = −𝑗𝜔𝜇0 [𝛿𝑝𝑞 +

1

𝑘0
2

𝜕2

𝜕𝑥𝑞𝜕𝑥𝑝
]𝜓(𝑟, 𝑟′),     𝑝, 𝑞 = 1,2,3             

𝜓(𝑟, 𝑟′) =
exp (−𝑗𝑘0|𝑟 − 𝑟′|)

4𝜋|𝑟 − 𝑟′|
 

𝑘0 = 𝜔(𝜇0𝜀0)
1/2 
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III. Transformation to Matrix Equation 

The integral equation formulations in Equation (3.8) and (3.9) can be transformed into a 

matrix equations using MoM. By choosing pulse function basis and point matching, the object is 

divided into 𝑁 subvolumes (or cells). The same pulse-basis functions are used for the contrast 

and the total field, meaning that 𝑒𝑣(𝑟
′) and 𝐶(𝑟′) are constant in each subvolume [54][58]. The 

relation between the values of the scattered field at 𝑀 points in 𝑁 cells is given in Equation 

(3.11).  

𝑒𝑣
𝑠(𝑟𝑚) = ∑ 𝐺(𝑟𝑚, 𝑟𝑗) 𝐶(𝑟𝑗) 𝑒𝑣(𝑟𝑗),       𝑚 = 1,2,⋯ ,𝑀𝑁

𝑗=1          (3.11) 

where 𝑚 is the index of the observation point around the object (receivers), depicted in Figure 

3.1, and 𝑗 is the index of the source point in square cells of the object. The 𝑣-term indicates the 

total number of measurements [19]. Before calculating the scattered field, the total field inside the 

object must be calculated by solving linear system. The total field in 𝑁 cells is solution of the 

following equation. 

𝑒𝑣
𝑖 (𝑟𝑛) = ∑ [𝛿𝑛𝑗 − 𝐺(𝑟𝑛, 𝑟𝑗) 𝐶(𝑟𝑗)]

𝑁
𝑗=1  𝑒𝑣(𝑟𝑗),      𝑛 = 1,2,⋯ ,𝑁       (3.12) 

where 𝑛 is the index of the observation point inside the object and 𝑗 is the index of the source 

point inside the object. From Equation (3.12) the object’s influence of the field inside itself is 

included. Equation (3.11) and (3.12) may be rewritten in matrix form as Equation (3.13) and (3.14), 

respectively.  

[𝐸𝑣
𝑠] = [𝐺𝑠][𝐶][𝐸𝑣]                           (3.13) 

[𝐸𝑣
𝑖 ] = [𝐼 − 𝐺𝑟𝐶][𝐸𝑣]                          (3.14) 

Where [𝐸𝑣
𝑠] is a vector with length 𝑀 while [𝐸𝑣] and [𝐸𝑣

𝑖 ] are vectors with length 𝑁. The 

[𝐶] matrix is an 𝑁 × 𝑁 diagonal matrix containing the permittivity contrast of the 𝑁 cells, and 

𝐼 is the identity matrix of size 𝑁 × 𝑁. The [𝐺𝑠] and [𝐺𝑟] matrix contains the Green’s operator 

and have the sizes of 𝑀 × 𝑁  and 𝑁 × 𝑁 , respectively. Including a multi-view process with 
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receiver rotation, the matrix formulation got increasing sizes of the matrixes in Equation (3.13) 

and (3.14), obtaining Equation (3.15) and (3.16), respectively. 

[𝐸𝑠] = [𝐺𝑠][𝐶][𝐸]                            (3.15) 

[𝐸] = [𝐼 − 𝐺𝑟𝐶]−1[𝐸𝑖]                        (3.16) 

We can determine the total electric field at each of the N cells by inverting [𝐼 − 𝐺𝑟𝐶] as 

shown in Equation (3.16). [𝐸] is the total field and [𝐸𝑖] is the incidence field inside the object 

region, and [𝐸𝑠] is the scattered field at the receiving points. The [𝐸] and [𝐸𝑖] vectors have the 

size 𝑇𝑁, where 𝑇 is the number of transmitters and 𝑁 is the number of cells in the object region. 

The scattered field [𝐸𝑠] is a vector of size 𝑇𝑀, where 𝑀 is the number of measurement points. 

The details on the transformation to matrix equation, and evaluation of matrix diagonal and off-

diagonal elements of Green’s Function are further elaborated in Appendix A and [7]. 

3.2 Inverse Problem 

In most situations of biomedical applications, where larger objects with a large contrast 

respect to the background medium, a non-linear method is needed [59]. Tomographic method is 

based on the non-linear inverse scattering to obtain quantitative images of larger high contrast 

objects. The inverse problem is formalized by finding the position and complex permittivity 

distribution of the unknown object from the measured scattered field (forward problem as 

described in Section 3.1). 

First, a specific objective function 𝑚  of the model need to be defined and then 

minimized. Generally, the objective function is tailored so that the solution from the inverse 

algorithm is "close" to the actual or reference model, and also that the reconstructed model has 

"minimum structure" in some sense. The model is parameterized as  

𝑚 = ∑ 𝑚𝑖𝜓𝑖

𝑀

𝑖=1
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Where 𝜓𝑖 are the basis functions defined in the imaging region 𝑆, and 𝑚𝑖 are constants. The 

basis functions are chosen to be rectangular prisms of unit amplitude, and hence 𝑚𝑖 is the value 

of the model in the i-th cell. Because the goal is to find a model which minimizes a specific 

objective function, the inversion results should not depend upon the model parameterization. In 

order to accomplish this, the examined object is fine discretized into square cells (or voxels), hence 

the number of cells are large, especially in 3-D models [55]. In each voxel, the complex properties 

are estimated, which consist of the relative permittivity and conductivity distribution. 

Optimization is a process of searching. For continuous problems with complicated object 

functions and large number of variables, such as the inverse problem, the indirect methods of 

optimization is practical. Indirect methods often referred as gradient-based optimization 

techniques, and approach the optimum solution in an iterative process. Newton’s method, Gauss-

Newton method, Levenberg-Marquardt method, conjugate gradient method and many other 

variants belong to this category [60]. The inverse problem involves three major steps in each 

iterations: 

(1) Minimize the difference or error between the measured scattered field and the 

calculated scattered field (to find the global minimum).  

(2) From (1), find the Jacobian matrix  𝐽 , (the derivate-matrix of the computed 

scattered field with respect to the complex contrast in the object). 

(3) Update the contrast distribution of the object under investigation. 

 

This process continues until the error is sufficient small, thus the reconstructed image of 

the object is the complex permittivity map used in the direct problem, depicted in Figure 3.2. 

The electromagnetic inverse scattering problem may be solved utilizing Newton-Kantorovich 

(NKT) [58], [61], and Distorted Born Iterative Method (DBIM) [62]–[64]. 
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Figure 3.2 Flow-chart of the microwave tomography-based breast imaging 

3.2.1 Newton-Kantorovich (NKT) 

Newton-Kantorovich (NKT) is a Newton-based least square method, a step by step 

algorithm which if converging, tends towards an exact solution [61][58]. In this thesis, the code 

developed by Joachimowicz et. al. [58] is extended into a 3-D configuration solution. By starting 

from a defined residual as the difference between the calculated scattered field in the forward 

problem, 𝐸𝑐𝑎𝑙𝑐
𝑠 (𝐶), and the measured scattered field, 𝐸𝑚𝑒𝑎𝑠

𝑠 , as Equation (3.17). 

 𝐸𝑑𝑖𝑓𝑓 = 𝐸𝑐𝑎𝑙𝑐
𝑠 (𝐶) − 𝐸𝑚𝑒𝑎𝑠

𝑠                            (3.17) 

The optimization will then be performed on the square norm 𝐹(𝐶) 

𝐹(𝐶) = ‖𝐸𝑐𝑎𝑙𝑐
𝑠 (𝐶) − 𝐸𝑚𝑒𝑎𝑠

𝑠 ‖2 = 𝑚𝑖𝑛                   (3.18) 

where the 𝐶 is the complex permittivity distribution matrix used in the forward problem. The 

goal is then to find the global minimum of this function. Using the Newton method, both the 
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gradient and the Hessian matrix of the function needs to be defined. The gradient be calculated as 

Equation (3.19) and the Hessian matrix as Equation (3.20). 

∇𝐶𝐹(𝐶) = 𝐽∗(𝐶)𝐸𝑑𝑖𝑓𝑓(𝐶)                     (3.19) 

𝐻𝐹(𝐶) = 𝐽∗(𝐶) 𝐽(𝐶) + ∑ 𝐸𝑑𝑖𝑓𝑓
𝑖 (𝐶)𝐻𝐸𝑑𝑖𝑓𝑓

𝑖 (𝐶)𝑀
𝑖=1                         (3.20) 

Where 𝐽(𝐶) is the Jacobian of the residual 𝐸𝑑𝑖𝑓𝑓(𝐶) with respect to the contrast 𝐶, 𝑀 is the 

number of observation points, and * denotes the conjugate transpose. The estimation of the step 

∆𝐶 in the optimization done using the following linear system 

𝐻𝐹(𝐶) ∆𝐶 = ∇𝐶  𝐹(𝐶)                          (3.21) 

The Hessian matrix defined in Equation (3.20) is usually hard to compute in practical problems. 

Therefore Equation (3.21) is often simplified by using a Gauss- Newton method as 

𝐽∗(𝐶) 𝐽(𝐶) ∆𝐶 = 𝐽∗(𝐶)𝐸𝑑𝑖𝑓𝑓(𝐶)                                           (3.22) 

The computation of the Jacobian matrix 𝐽 is a central part of the optimization process. 

𝐽 is the derivative matrix containing the scattered field dependence of the contrast 𝐶 inside the 

object, where 𝐽(𝐶) = [𝛿𝐹(𝐶) 𝛿𝐶⁄ ] with elements of [𝐽]𝑖𝑗 = 𝛿𝐹𝑖 𝛿𝐶𝑗⁄  [55]. An analytical 

expression for 𝐽 is derived in Appendix B. Equation (3.22) can be solved for a least square 

solution, which is equivalent to solving the matrix equation in Equation (3.23). 

∆𝐶 = [𝐽∗(𝐶) 𝐽(𝐶) ]−1 𝐽∗(𝐶)𝐸𝑑𝑖𝑓𝑓(𝐶)                  (3.23) 

By introducing this relation into an iterative procedure, the initial nonlinear relation 

characterizing the inverse scattering problem can be transformed by a sequence of linear ones. 

However, this solution is very limited while it has no control to find the global minimum, (of 

Equation (3.18)), while the implementation does not support regularization to avoid local minima. 

Therefore the Newton-Kantorovich method is used. In this method, the [𝐽∗(𝐶) 𝐽(𝐶) ]−1  in 

Equation (3.23) is extended with a regularization parameter, 𝛾, as in Equation (3.24). 

∆𝐶 = [𝐽∗(𝐶) 𝐽(𝐶) + 𝛾𝐼]−1𝐽∗(𝐶)𝐸𝑑𝑖𝑓𝑓(𝐶)               (3.24) 



 

31 

Instead of solving Equation (3.23), the computation of the contrast step ∆𝐶 may be derived from 

Equation (3.24) or (3.25) with the known Jacobian matrix. 

∆𝐶 =  [𝐽∗ 𝐽 + 𝛾𝐼]−1 𝐽∗ 𝐸𝑑𝑖𝑓𝑓                        (3.25) 

Here, [𝐽∗ 𝐽 + 𝛾𝐼]−1 is an ill-conditioned situation, where small errors on the data may 

produce unphysical solution. The numerical instability of the inverse problem is here related to the 

large condition number of the matrix 𝐽∗ 𝐽. The regularization parameter, 𝛾 is used to improve the 

convergence of an ill-posed problem. The parameter is chosen to lower the condition number of 

the 𝐽∗ 𝐽 matrix, which stabilizes the convergence to avoid local minima. For an example, a large 

regularization parameter is needed when the convergence is far from the expected solution and a 

small regularization parameter is needed when the error is small and the convergence is close to 

the global minima. 

However, to decrease the condition number, a strong regularization process may remove 

useful components and decrease the spatial resolution. One must look for a solution stable and 

accurate at once. As a consequence, the regularization parameter 𝛾 must be chosen in order to 

accommodate a convenient spatial resolution-stability compromise. Therefore, the regularization 

of the optimization is a major issue during the non-linear inverse scattering in microwave imaging. 

This parameter is determined in each iteration using a priori information. Another, very important 

factor is the initial guess. Choosing a proper starting point for the convergence has a major 

influence on the ability to find the global minimum, or a physically correct image.  

In this thesis, 𝛾 is taken as  

𝛾 = α 
trace [𝐽∗ 𝐽]

𝑁
[𝑒𝑟𝑟𝑠]

2                      (3.26) 

𝑒𝑟𝑟𝑠 = √
∑ |𝐸𝑅

𝑠 (𝑖)−𝐸𝑚𝑒𝑎𝑠
𝑠 (𝑖)|

2𝑀
𝑖=1

∑ |𝐸𝑚𝑒𝑎𝑠
𝑠 (𝑖)|2𝑀

𝑖=1

                       (3.27) 

Where 𝛼  represents the magnitude of 𝛾 , and the initial value is chosen intuitively, and is 
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determined empirically according to the convergence of the process. The trace of the matrix 𝐽∗ 𝐽 

in order to reduce the gap between its higher and lower eigenvalue and thus to improve its 

conditionment. The relative mean square (RMS) error of the scattered field 𝑒𝑟𝑟𝑠 (M: number of 

observation points), in order to decrease the weight of 𝛾 during the process [58]. The new contrast 

is updated in each iteration as 

𝐶𝑛+1 = 𝐶𝑛 + ∆𝐶                         (3.28) 

where 𝑛 is the iteration number. These steps are repeated according to Figure 3.2, as long as the 

convergence criteria on the RMS error of the scattered field is not reached.  

3.2.2 Distorted Born Iterative Method (DBIM) 

I. Electromagnetic inverse scattering and Born approximation 

As explained in Section 3.2.1, an estimate of the unknown complex permittivity 𝜀∗(𝑟) 

in 𝑆 is reconstructed based on a relationship between the fields scattered from the imaging region 

and the contrast of the complex permittivity within that region. Based on Equation (3.8), for a 

measurement at an observation location 𝑟 at a given frequency, the scattered electric field can be 

expressed by an integral equation 

𝐸𝑠(𝑟) = 𝐸𝑡(𝑟) − 𝐸𝑖(𝑟)                                   

= 𝑘0
2 ∫ 𝐺̅𝑏(𝑟|𝑟′) 𝐸𝑡(𝑟′)[𝜀∗(𝑟′) − 𝜀𝑏(𝑟′)]

𝑆
𝑑𝑟′      (3.29) 

where 𝐸𝑖 is the incident field in the presence of the background medium permittivity 𝜀𝑏(𝑟), and 

𝑘0  is the free-space wavenumber. 𝐸𝑠  is the scattered electric field, which is the difference 

between the total field observed in the object environment and the total field observed in the 

background environment. The scattered field results from the re-radiation of the total field 𝐸𝑡 in 

volume 𝑆, and the difference between the complex permittivity of the unknown region 𝜀∗(𝑟) and 

the background medium 𝜀𝑏(𝑟). The difference 𝜀∗(𝑟) − 𝜀𝑏(𝑟) is the unknown quantity of interest, 
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and known as the contrast function 𝐶 in Equation (3.8). The scattering field due to the contrast 

function at  𝑟 ∈ 𝑆 is determined by the dyadic Green’s function 𝐺̅𝑏(𝑟|𝑟′) of the background 

medium [62][63].  

The total field 𝐸𝑡  in 𝑆  depends on the multiple scattering interactions between the 

features of the complex permittivity. Therefore, the scattered field 𝐸𝑠 is nonlinearly related to the 

contrast function due to the product 𝐸𝑡(𝑟)[𝜀∗(𝑟) − 𝜀𝑏(𝑟)] in the integrand of Equation (3.29). 

Here, the distorted Born iterative method (DBIM) is employed, where the non-linear relation can 

be linearized using the Born approximation. At each iteration of the DBIM, the total field within 

the actual permittivity in 𝑆 is approximated by the total field in the background medium 𝜀𝑏(𝑟), 

i.e. 𝐸𝑏 replace 𝐸𝑡 in Equation (3.29). The approach requires computation of the fields at the 

antennas and inside 𝑆 for each iteration of the background medium.  

II. Linear system of scattering equation 

Here, the formulation of linear system of scattering equation in Equation (3.29) is 

explained. The first-order Born approximation to Equation (3.29) is linear in the unknown contrast 

function 𝜀∗(𝑟) − 𝜀𝑏(𝑟). For simplicity, the contrast function of Equation (3.29) are replaced by 

the frequency-dependent non-Debye model of Equation (2.1), which are relative permittivity 𝜀𝑟 

and conductivity 𝜎. Equation (3.30) defines a general parametric model of complex function. 

𝜀∗(𝜔) − 𝜀𝑏(𝜔) = ℱ(𝜔,  𝜀𝑟 , 𝜎) − ℱ(𝜔, 𝜀𝑟
𝑏 , 𝜎𝑏)               (3.30) 

ℱ = 𝜎 + 𝑗𝜔𝜀0𝜀𝑟 

Using Equation (3.30), the multiple observation linear scattering system of Equation (3.29) can be 

transformed to Equation (3.31). 

𝑒𝑠 = [
𝜕ℱ

𝜕𝜀𝑟
B

𝜕ℱ

𝜕𝜎
B] [

𝜀𝑟 − 𝜀𝑟
𝑏

𝜎 − 𝜎𝑏
]                         (3.31) 
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𝐁 = [

H1,1

H2,2

⋮
H𝑀,𝑁

] , H𝑚,𝑛 =

[
 
 
 
𝐺̅𝑏(𝑟𝑛|𝑟′

1) 𝐸
𝑏(𝑟′

1|𝑟𝑚)

𝐺̅𝑏(𝑟𝑛|𝑟′
2) 𝐸

𝑏(𝑟′
2|𝑟𝑚)

⋮
𝐺̅𝑏(𝑟𝑛|𝑟′

𝐾) 𝐸𝑏(𝑟′
𝐾|𝑟𝑚)]

 
 
 
𝑇

∈ 𝐶3×𝐾,
𝑚 = 1,⋯ ,𝑀
𝑛 = 1,⋯ , 𝑁

 

Where 𝑩 is the matrices that associated with each observations, and collected as the block-rows 

of a larger matrix. M and N are numbers of transmitting and receiving antenna, K is number of 

voxels within volume 𝑆 , and T  is transpose of the matrix. The coefficients 𝜕ℱ 𝜕𝜀𝑟⁄  and 

𝜕ℱ 𝜕𝜎⁄  must be constant so that the system remains linear in the unknown parameters [62]. The 

contrast function 𝜀∗(𝑟) − 𝜀𝑏(𝑟)  over 𝑟 ∈ 𝑆  is compactly denoted as 𝛿{𝜀∗(𝑟)} . Thus the 

contrast functions of these two parameters, which are 𝛿{𝜀𝑟(𝑟)} , and 𝛿{𝜎(𝑟)} , are the new 

unknowns over 𝑟 ∈ 𝑆. Since these two parameters are all real-valued, Equation (3.31) is split into 

a pair of real and imaginary equations so that the solution space is limited to real values. 

For an array of 𝑁  antennas, there are 𝑁2𝐹  total frequency-domain measurements, 

where 𝐹  is the number of discrete frequencies to be included in the solution. Each of 𝑁2𝐹 

measurements yields a pair of real and imaginary vector equations. The resulting set of 𝑀 = 𝑁2𝐹 

equations is then discretized over the reconstruction region 𝑆 . The imaging region 𝑆  is 

discretized to obtain the set of 𝐾 voxels and vectorized, so that the unknown contrast function 

for each parameter forms 𝐾 × 1 vector. The two vectors are collected into a single 2𝐾 × 1 

vector c. For each equation, the remaining elements of the summand form a 2𝑀𝐹 × 2𝐾 matrix 

A. The differences between the measured fields and the calculated fields (computed by the forward 

problem) are collected into a vector of residual scattered fields b with size of 2𝑀𝐹 × 1. In this 

thesis, we use single frequency (𝐹 = 1) for each transmit-receive antenna pair. From Equation 

(3.31), the resulting linear system as expressed in Equation (3.32) is denoted as A c = b, then is 

structured for each channel  𝑑 between a transmitter at 𝑟𝑚 and a receiver at 𝑟𝑛. 
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[
 
 
 
 
 
 
 
 ℜ {

𝜕ℱ

𝜕𝜀𝑟
B1} ℜ {

𝜕ℱ

𝜕𝜎
B1}

⋮

ℜ {
𝜕ℱ

𝜕𝜀𝑟
B𝑀} ℜ {

𝜕ℱ

𝜕𝜎
B𝑀}

ℑ {
𝜕ℱ

𝜕𝜀𝑟
B1} ℑ {

𝜕ℱ

𝜕𝜎
B1}

⋮

ℑ {
𝜕ℱ

𝜕𝜀𝑟
B𝑀} ℑ {

𝜕ℱ

𝜕𝜎
B𝑀}]

 
 
 
 
 
 
 
 

[
 
 
 
 
 
𝛿(𝜀𝑟)1

⋮
𝛿(𝜀𝑟)𝐾

𝛿(𝜎)1
⋮

𝛿(𝜎)𝐾 ]
 
 
 
 
 

=

[
 
 
 
 
 
ℜ{𝐸1

𝑠}
⋮

ℜ{𝐸𝑀
𝑠 }

ℑ{𝐸1
𝑠}

⋮
ℑ{𝐸𝑀

𝑠 }]
 
 
 
 
 

                     (3.32) 

δ(𝜀𝑟) = 𝜀𝑟 − 𝜀𝑟
𝑏                           𝛿(𝜎) = 𝜎 − 𝜎𝑏 

𝜕ℱ 𝜕𝜀𝑟⁄ = 𝑗𝜔𝜀0                 𝜕ℱ 𝜕𝜎⁄ = 1 

Where the ℜ{ }  and ℑ{ }  operators denote the real and imaginary parts of the complex 

argument in matrix A. 

The linear system A c = b  in Equation (3.32) is a multi-static, single frequency, 

linearized description of the scattering with respect to the contrast function, and formulated in the 

non-Debye model. The linear system utilizing three parameters of Debye model ε∞, ∆𝜀, and 𝜎𝑠 

of Equation (2.2) can be derived in the same manner. Moreover, observations at multiple 

frequencies can be added to the linear system of scattering equations by vertically concatenating 

the multiple-observation vectors at each of the frequencies. The solution of this system, i.e. c, 

yields an estimate of the contrast function of the unknown object [63]. 

III. DBIM implementation 

The DBIM has been used as an alternative iterative method to solve the 2-D nonlinear 

inverse scattering problem [56]. The DBIM is equivalent to a Gauss–Newton approach [65] to 

nonlinear least-square optimization problems, as described in Section 3.2.1, to estimate the 

contrast function from the observations of nonlinear scattering.  

This method begins with an initial guess for the background permittivity that may include 

any available a priori information about the object permittivity. At each iteration, MoM is used in 

the forward problem to efficiently compute a system of scattering equations, which consists of the 

background fields and Green’s functions (i.e. measurements data). In the inverse problem, the 
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solution of system, c, yields an estimate of the contrast function of the unknown object, 𝛿{𝜀𝑟̂(𝑟)} , 

and 𝛿{𝜎̂(𝑟)}, which are then combined into an estimate of the complex permittivity contrast 

𝛿{𝜀 ∗̂(𝑟)}. The contrast perturbations 𝛿{𝜀 ∗̂(𝑟)} is used to update the estimated object permittivity. 

The updated object permittivity is added to the 𝐾 cells of the i-th background permittivity to 

create the new background, as expressed in Equation (3.33). 

𝜀𝑏
𝑖+1(𝑟𝑘) = 𝜀𝑏

𝑖(𝑟𝑘) + 𝛿(𝜀 ∗̂(𝑟𝑘)),     𝑘 = 1,2,⋯ , 𝐾.   𝑟𝑘 ∈ 𝑆         (3.33) 

For next DBIM iteration, the total field and the scattering field at the forward problem are 

recalculated based on the new background permittivity 𝜀𝑏(𝑟). The DBIM algorithm alternates 

between forward and inverse problems, while updating the 𝜀𝑏(𝑟)  at each iteration. As the 

estimate is improved, the difference in the scattering from the background permittivity and the 

object permittivity decreases at each iteration. The DBIM algorithm is terminated when 

convergence is reached in the minimization of the residual scattering  ‖𝐛‖. In this thesis, the 

configuration solution is based on the code developed by J.D. Shea et. al. [62][63]. 

3.3 Ill-posedness and Regularization 

3.3.1 Ill-posed problems 

Hadamard introduced the definition of mathematical term ill-posedness [66]. From 𝐀𝐜 =

𝐛 of Equation (3.32), the inverse problem is to find 𝐜 for a given data 𝐛 and known matrix 𝐀. 

The inverse problem is called well-posed (in the Hadamard sense), if 

(a) A solution exists, 

(b) The solution is unique, and 

(c) The solution is stable and its behavior depends continuously on data 𝐛. 

The meaning of (a) is the solution 𝐜 satisfy the equation. For (b), the solution 𝐜 does 

not exist more than one in the space of bounded functions. Lastly, for (c), a tiny perturbation in the 
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data results small differences in the solution 𝐜 [67]. Even if a problem is well-posed, it may still 

be ill-conditioned, implies that small changes in the data can cause arbitrarily large changes in the 

solution [68]. An ill-conditioned problem is indicated by a large condition number. The problem 

is called ill-posed otherwise than mentioned in (a) – (c). An ill-posed problem must be converted 

into a well-posed problem in order to be solved.  

To find an approximate solution 𝐜 of the Equation (3.32), the standard approach is based 

on linear least squares approach is used, as written in Equation (3.34). Linear least squares seeks 

to minimize the residual norm, which can written in Equation (3.35). 

A𝑇A c = A𝑇b                                   

 c = [A𝑇A]−1A𝑇b                           (3.34) 

min
𝑐

‖𝐴𝑐 − 𝑏‖2                             (3.35) 

The linear model of the scattering system in Equation (3.35) is ill-posed problems, if both of the 

following criteria are satisfied:  

(a) the singular values of 𝐴 decay gradually to zero, and 

(b) the ratio between the largest and the smallest nonzero singular values is large.  

Criterion (a) implies that there is no “nearby” problem with a well-conditioned coefficient 

matrix and with well-determined numerical rank. Meanwhile (b) implies that the matrix 𝐴 is ill-

conditioned, i.e., the solution is potentially very sensitive to perturbations [69]. Ill-posed problem 

can cause the ordinary least squares estimation leads to an overdetermined (over-fitted) system of 

equations. It is also yields a highly undetermined (under-fitted) system without a unique solution 

if the number of unknowns in 𝑆 is much greater than the number of measurements, such as 

2𝑀𝐹 ≪ 2𝐾.  

The image reconstruction problem in microwave tomography is a specific example of an 

inverse scattering problem that is typically ill-posed and nonlinear. It has been shown that the ill-

https://en.wikipedia.org/wiki/Condition_number
https://en.wikipedia.org/wiki/Overdetermined_system
https://en.wikipedia.org/wiki/Over-fitted
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posedness of the inverse scattering problem varies with factors as follows [70][71]: 

(1) Increasing the resolution of the reconstructed profile results in an increase in the 

number of unknowns and consequently an increase in the ill-posedness.  

(2) The nonlinearity and ill-posedness of the inverse problem tends to increase as the 

number of frequency increases. 

(3) The degree of the singularity is primarily depended on the data collection strategy, 

which includes the location of transmitting and receiving antennas. 

(4) The priori information about the model is inconsistent with the objective function of 

model, thus leads to inherent non-uniqueness solution [55]. 

3.3.2 Regularization methods 

For discrete ill-posed problems in Equation (3.35), they are essentially underdetermined 

due to the cluster of small singular values of A. Hence, it is necessary to incorporate further 

information about the desired solution in order to stabilize the problem and to single out a useful 

and stable solution. This is the purpose of regularization. The regularization aims at enforcing 

bounds or constraints on the reconstructed solution and, thus, to reduce the number of degrees of 

freedom in the solution.  

Most commonly used regularization methods for a linear ill-posed problems are the 

truncated singular value decomposition (TSVD), and Tikhonov regularization. A common feature 

of these regularization methods is that they depend on some regularization parameter that gives a 

good balance, filtering out enough unnecessary data without losing too much information in the 

computed solution [68]. In this thesis, we examine two approaches for choosing the regularization 

parameter using:  

(1) an empirical formula, and 

(2) Tikhonov regularization based on L-curve method.  
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On point (1), as described in Section 3.2.1, a regularization parameter γ has been introduced 

in Equation (3.24) – (3.25), and calculated empirically based on Equation (3.26) – (3.27). In this 

section, we will elaborate on point (2). 

3.3.3 L-curve method 

In Equation (3.35), Tikhonov regularization method defines the regularized solution L𝜆 

as the minimizer of the following weighted combination of the residual norm ‖Ac − b‖2 and the 

side constraint Ω(𝑐) = ‖I (𝑐 − 𝑐∗)‖2.  

L𝜆 = arg min{‖𝐴𝑐 − 𝑏‖2
2 + 𝜆2‖I (𝑐 − 𝑐∗)‖2

2}               (3.35) 

Where the matrix I is typically the identity matrix, and 𝑐∗ is an initial estimate of the solution. 

The regularization parameter 𝜆  controls the weight given to minimization of the side 

constraint Ω(𝑐) relative to minimization of the residual norm. Clearly, a large 𝜆 favors a small 

solution seminorm at the cost of a large residual norm, whereas a small 𝜆 has the opposite effect. 

Therefore, it is important to choose an appropriate 𝜆, which gives a good balance between the 

residual norm and the side constraint. A regularization method produces a regularized solution, 

𝑐𝑟𝑒𝑔 [68][69][72]. 

In Tikhonov regularization, the L-curve method is proposed for choosing the 

regularization parameter. For all valid regularization parameters, L-curve is a parametric plot of 

the norm ‖I 𝑐𝑟𝑒𝑔‖
2

 of the regularized solutions versus the corresponding residual norm 

 ‖𝐴𝑐𝑟𝑒𝑔 − 𝑏‖
2
. The L-curve method consists of two procedures.  

(1) Compute the curvature in log-log scale (log‖𝐴𝑐𝑟𝑒𝑔 − 𝑏‖
2
, log‖I 𝑐𝑟𝑒𝑔‖

2
)  

(2) Select the point with the maximum curvature. 

Any regularized solution must lie on or above the Tikhonov L-curve. Hence, 𝜆 , 

corresponding to the L-curve’s corner is chosen as the appropriate regularization parameter. The 
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L-curve almost always has a characteristic L-shaped appearance with a distinct corner when 

plotted in log-log scale, as shown in Figure 3.3.  

 

 

Figure 3.3 The generic form of the Tikhonov L-curve [69] 

We utilized the REGULARIZATION TOOLS  package of MATLAB to determine the 

regularization parameter 𝜆. The routine l_curve produces a log-log plot of the L-curve and also 

locates the corner and identifies the corresponding regularization parameter. Given a discrete set 

of values of ‖𝐴𝑐𝑟𝑒𝑔 − 𝑏‖
2

 and ‖I 𝑐𝑟𝑒𝑔‖
2

, routine plot_lc  plots the corresponding L-curve, 

while routine l_corner locates the L- curve’s corner [69]. 

3.4 Challenges in MWT 

To make MWT a viable imaging method, its current achievable image quantitative 

accuracy and resolution need to be enhanced. Broadly speaking, two general approaches have been 

suggested to increase the image quantitative accuracy and resolution achievable from MWT.  

(1) Increase the amounts of measurement data (i.e., obtain diverse observations data), and 

(2) Interpret the collected scattering information in a better way.  
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Within the framework of these two approaches, several approaches as listed below are considered: 

(1) increasing the number of antennas (or, probes) [73],  

(2) using multiple-frequency data sets [74], 

(3) simultaneous use of transverse magnetic and electric data sets (polarization) [75],  

(4) using more effective inversion algorithms and regularization techniques [76].  

 

Here, we will elaborate only a few techniques from mentioned above. The amount of 

observation data can be increased by increasing the number of antennas. However, the antennas 

must be arranged at a certain distance from each other because of the wavelength. Thus, the scale 

of the apparatus increases and the computational cost becomes substantial. Furthermore, the 

signal-noise ratio (SNR) is degraded by this method, which increases the measurement error, thus 

creates difficulties in the accurate image reconstruction. 

Until now single frequency is most widely used, but a method using multi-frequencies 

has been proposed [63][74][77]. It is known that the lower frequencies are used to enable the 

imaging of large structures and high-contrast objects, and used as the initial guess for the 

proceeding iterations. Meanwhile higher frequencies are used to improve the resolution with the 

reconstruction from the lower frequency. The idea is that a combination will improve the 

reconstruction. However, as explained in Section 2.2.2, biological tissues is a medium with 

frequency dependence of the complex permittivity. Its dispersion behavior is modeled using a 

single-pole Debye model with parameters of ε∞, ∆𝜀, and 𝜎𝑠 in Equation (2.2). In this method, 

the number of unknown parameters is increased along with the number of frequencies; thus, the 

approach becomes difficult. 

Lastly, the multi-polarization method has been examined as a means to obtain a variety 

of observations data [73][75][78][79]. Polarization is a unique aspect of MWI which is not usually 
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available in most other imaging modalities, which can be exploited as a source of information. 

This issue is the main interest in the thesis and will further discussed in next section. 

3.5 Polarization Diversity 

In this thesis, we investigate the impact of different antenna orientations (i.e., 

polarizations) on the quality of the measured data, and finally on the image reconstruction. The 

changes in the polarization of the scattered waves are influenced by the composition and shape of 

the biological tissue.  

Figure 3.4 shows the developed breast imaging arrays designed for microwave inverse 

scattering by other researchers, which are the vertically oriented monopole antennas and 

horizontally oriented monopoles. In Figure 3.4(a), the data acquisition platform consists of 16 

monopole antennas organized in a circular fashion, which positioned vertically to allow free 

vertical motion over the full tank span. The first clinical 3-D microwave tomographic images of 

breast were presented [80]. In Figure 3.4(b), the microwave imaging system contains 32 antennas 

which is oriented horizontally and positioned in in a cylindrical setup. A reasonable agreement in 

the shape and position of a simple object is obtained [40]. 

 

   

(a) vertical oriented [80],    (b) horizontal oriented [40]. 

Figure 3.4 Schematic 3-D representation of data acquisition platform 
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While many techniques have been leveraged toward a microwave imaging solution, they 

are all fundamentally dependent on the quality of the scattering data. By sourcing and observing 

the field components corresponding to the polarizations of interest, the effect of the polarization 

on the information content of the scattering data can be studied. Therefore, a variety of polarization 

arrangements have been proposed for use in microwave imaging systems. For example, a truncated 

singular-value decomposition (TSVD) analysis on the vertical and horizontal polarization of 

source and receive antennas performance has been compared [81]. The fidelity performance of 

both polarizations is similar, but vertical polarization configuration showed a slight improvement 

over noise than horizontal polarization.  

As mentioned in Section 3.4, in order to achieve accurate image reconstruction, the 

number of antennas can be increased to obtain various information content of the scattering data. 

However, the measurement error increases if the SNR decreases; thus, it cannot reconstruct the 

image accurately. Therefore, it is necessary to minimize the analysis region in order to reduce the 

computational cost and the ill-posedness of inverse problems. For this reason, the implementation 

of a compact sensor that involves a small distance between the antenna and the breast is preferred 

to obtain coverage in the entire imaging domain. Consequently, a large number of antennas must 

be arranged in a small and limited space. To overcome this, various observation data can be 

obtained even in a small space by changing the plane of polarization. 

The use of TE and TM polarization in the near-field region within the same system has 

been proposed, as shown in Figure 3.5 [73]. In the imaging system, modulated scatterer technique 

(MST) was used to measure the scattered field from the probe array to provide a high data 

acquisition rate of electromagnetic field distribution. Another experimental results for 3-D imaging 

of simple objects with a dual-polarized array were also reported [75]. However, the frequency used 

is relatively high, and there are some issues regarding the imaging quality presented. 
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Figure 3.5 Schematic representation of the dual-polarized imaging system [73] 

The impact of multi-polarization on image reconstruction was investigated with a 

shielded array of patch antennas using TSVD analysis [78], as the continuation of research in [81]. 

Based on the proposed patch antenna array of multiband, miniaturized patch antennas in [79], a 

multi-polarization layout was investigated in addition to uniform array configurations, as shown 

in Figure 3.6. The results of TSVD analysis show that the multi-polarization configuration with a 

higher truncation index performs better than vertical and horizontal polarizations. Although the 

reconstructed profiles demonstrated no significant differences between these polarizations, this 

indicate that polarization diversity may be introduced as one of the significant design consideration. 



 

45 

Width: 18 cm  

Height: 15 cm 

Length: 18 cm 

 

(a) Proposed enclosed array [79] 

 

 

(b) Three configurations of the one side panel (vertical, horizontal, multi polarization) [78] 

Figure 3.6 Illustration of a 32-element array proposed by Hagness et. al. 

From above, the effectiveness of employing multi-polarization in radar-based approach 

to reconstruct images using TSVD analysis have been reported. However, to our knowledge, there 

has been no prior investigation on the physical considerations related to antenna arrangement in 

order to achieve sufficient image reconstruction. This information can be used as a viable 

parameter in antenna array design. In this thesis, in addition to the effect of the polarization, the 

effect of the correlation of coefficient in image reconstruction were studied. The proposed 

configuration array utilizing multi-polarization is explained in Chapter 4. 

 



 

46 

CHAPTER 4 

PROPOSED MICROWAVE TOMOGRAPHY SYSTEM 

4.1 Overview 

In this thesis, we present a compact-sized imaging sensor using the multi-polarization 

method for breast cancer detection. This chapter explains the proposed configuration algorithm, 

antenna array configuration, and breast models to realize the 3-D microwave breast imaging.  

4.2 Proposed Configuration 

4.2.1 Imaging Algorithm 

In this thesis, the algorithm is configured through different input files according to Figure 

4.1. The transmitter-receiver (transceiver) configuration file introduce the positions in space of the 

transceivers and how many transceivers is used. The geometry file specifying the object region, 

the number of cells, size and the complex permittivity of the background medium. In the initial 

permittivity file, the initial guess of the objects complex permittivity 𝐶0 is specified. The last 

input file is the measured scattered field 𝐸𝑚𝑒𝑎𝑠
𝑠  obtained from the forward problem, which 

contains the expected scattered field for the optimization process. Finally, the reconstructed image 

𝐶𝑛 is stored in the reconstructed permittivity file. 

MoM is used to obtain the scattering field measurement in the forward problem. Whereas 

in the inverse problem, Newton-Kantorovich method or DBIM is implemented to reconstruct the 

object under investigation. For choosing the regularization parameter, we used: (1) an empirical 

formula, and (2) L-curve method. The transmitter-receiver configuration file and geometry 

configuration file will be discussed in next section. 
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Figure 4.1 The input and output interface of the configuration algorithm 

4.2.2 Imaging System Development 

The proposed microwave tomography system is mainly based on the microwave 

mammography system developed by Kuwahara et. al., as shown in Figure 4.2(a). The equipment 

features an imaging sensor, an antenna switch for changing the combination of the transmitting 

and receiving antenna, and a 2-port vector network analyzer (VNA) as a transceiver. It also 

comprises of a PC to control the VNA and the antenna switch, and obtain the measurement data, 

and a workstation (WS) for measurement data processing. The antenna system is designed 

assuming that, during the examination, the patient lies prone a top a measuring tank with one breast 

pendant in the imaging antenna array. As shown in Figure 4.2(b), the small size of breast imaging 

sensor is equipped with an aspirator on top for pressure suction. Hereby, the breast is fixed to the 

inner shape of a sensor, thus, the shape of the breast for the imaging process is known. [13].  

As mentioned in Section 3.5, if the distance between the imaging breast and the antenna 

array is large, the propagation loss increased. Thus, the measurement error increased as a result 

of reduced SNR. This condition will gives difficulties to detect changes in the breast accurately. 
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For this reason, it is necessary to design a compact sensor that involves a small distance between 

the antenna and the breast. 

 

        

(a) Schematic diagram [13],  (b) Sensor with aspirator [18] 

Figure 4.2 Microwave mammography development by Kuwahara et. al. 

In this thesis, the development on the imaging sensor will be focused. For our microwave 

tomography system, the breast imaging sensor is modified based on Figure 4.2(b). The prototype 

breast imaging sensor is shown in Figure 4.3. A number of antennas are embedded in a rectangular 

resin block which provides a hemispherical space to accommodate patient’s breast. In order to 

maintain the hemispherical volume of imaging breast, an aspirator connected to a suction valve is 

equipped on the lower surface of resin block. The material constant of the resin block is 

approximately similar to those of the adipose tissue. Moreover, due to the close contact between 

the breast and the sensor, a lossy matching fluid becomes unnecessary to reduce the influence of 

surrounding structures.  
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Width: 96 mm  

Height: 48 mm 

Length: 96 mm 

 

Figure 4.3 Prototype breast imaging sensor [82] 

4.3 Breast Imaging Sensor 

Based on Figure 4.3, an enclosed array with dimensions width 96 × length 96 × height 48 

mm is proposed in Figure 4.4. The size of our configuration is more compact than suggested by 

Burfeindt et. al. which has dimensions width 18 × length 18 × height 15 cm, as shown in Figure 

3.6(a) [79]. For our investigation, 32 antennas and 36 antennas are chosen. This is based on a trade-

off between maximizing the amount of measurements available for the imaging algorithm, and the 

limited space which is available for the measurement units and antennas in the imaging system.  

4.3.1 32-elements antenna 

The antennas are arranged in a 4 × 2 configuration on each of the four side-panels of the 

sensor. Figure 4.4(a) shows the position of the antenna. One of the antennas is used for transmitting, 

and all the elements including transmitter are used for receiving data. In this thesis, we investigated 

three different antenna arrangements to show the impact of polarizations on 3-D image 

reconstruction. The lines in Figure 4.4 represent the polarization direction of the antenna, where 
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the y -axis indicates vertical polarization, and the x - or z -axis horizontal polarization. The 

antenna arrangements for each side are identical, and the four side-panels are parallel to either the 

xy- or zy-plane. 

Figure 4.4(a) illustrates the vertical polarization, Figure 4.4(b) the horizontal polarization, 

and Figure 4.4(c) a mix of vertical and horizontal polarization (hereafter referred to as multi-

polarization). The vertical configuration in Figure 4.4(a) has 32 vertical polarized antennas, as all 

antennas are polarized in the y-direction. The horizontal configuration in Figure 4.4(b) has 16 x-

polarized antennas and 16 z-polarized antennas. Whereas the multi-polarized configuration has 8 

x -polarized, 8 z -polarized, and 16 y -polarized antennas. Furthermore, we avoid arranging 

antennas on the top surface of the panel to clearly show the effect of polarization.  

 

 

(a) Vertical polarization (VP) 

 

 

(b) Horizontal polarization (HP) (c) Multi-polarization (MP) 

Figure 4.4 Proposed imaging sensor with three polarizations in 32-elements [50] 
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4.3.2 36-elements antenna  

The effectiveness of applying multi-polarization to transmit and receive antennas have 

been confirmed in [50], [51]. As a continuity from 32-elements antenna in Section 4.3.1, we use 

more antennas and different antenna layouts on the side panels. In addition, we also arranged 

antennas on the top surface of the enclosed array. 

We assumed two imaging sensors consists of 36 antennas installed on the rectangular box. 

The antennas are arranged in a 3 × 2 configuration on each of the four side-panels, and 12 antennas 

on top surface of the sensor. The antenna arrangements for each of the four side-panels are identical. 

Figure 4.5 shows the position of the antenna. Similar with Figure 4.4, one of the antennas is used 

for transmitting, and all the elements including transmitter are used for receiving data. The lines 

in Figure 4.5 shows the polarization direction of the antenna, where the y-axis indicates vertical 

polarization. The configuration shown in Figure 4.5(a), the antennas are organized to generate 

single polarization which has 24 y-polarized, and 12 z-polarized antennas. Whereas, the 

configuration shown in Figure 4.5(b), the antennas are arranged to generate multi-polarization 

which has 12 x-polarized, 12 z-polarized, and 12 y-polarized antennas. 

 

 

(a) Single polarization   (b) Multi-polarization 

Figure 4.5 Proposed imaging sensor with multi-polarizations in 36-elements [83] 



 

52 

Comparing the performance of the layouts shown in Figure 4.4(a) – (b), we addresses the 

question of whether uniform vertical or uniform horizontal polarization yields better performance. 

Meanwhile, evaluating the performance of the layout shown in Figure 4.4(c) and Figure 4.5 further 

addresses the question of whether employing diversity polarizations is a viable strategy for 

accurate image reconstruction, as mentioned in Section 3.5. The proposed antenna array 

configurations are summarized in Table 4.1. 

Table 4.1 Proposed antenna array configurations 

Array ID No. of antennas Polarization 

32 36 VP* HP* MP* 

32VP ✔  ✔   

32HP ✔   ✔  

32MP ✔    ✔ 

36SP*  ✔ ✔ ✔  

36MP  ✔   ✔ 

✔: the considered elements 

*VP = Vertical polarization, HP = Horizontal polarization, MP = Multi polarization 

*SP = Single polarization 

4.1 Breast Model 

This section discusses the design of the breast model based on tissue-mimicking method. 

The breast is modeled by a hemisphere with radius of 4.8 cm. Here, the breast can be simplified 

in an approximation model. It can be modelled as skin, adipose tissue, fibro glandular tissue, cancer, 

and chest wall. Several parameters are used to indicate the dielectric properties of each tissues. For 

the sake of simplicity, the following assumptions have been made: 
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(1) The thickness and the complex permittivity of skin is assumed as known parameters 

and not considered in simulations. 

(2) The mathematical complexity of the Cole-Cole model in Equation (2.3) is avoided 

due to large number of unknowns and high computational cost. This led us to 

investigate simple models of tissue structures using Equation (2.1), which has two 

unknown parameters, 𝜀𝑟 and σ.  

 

Suppose the inhomogeneous medium with a finite volume 𝑆  is embedded in 

homogeneous background medium with relative permittivity 𝜀𝑟
𝑏 and conductivity σ𝑏. Let assume 

a time dependence exp (−𝑗𝜔𝑡), the complex permittivity 𝜀∗(𝑟) at a point 𝑟(𝑥, 𝑦, 𝑧) of 𝑆 is 

denoted by 𝜀∗(𝑟) = 𝜎(𝑟) + 𝑗𝜔𝜀0𝜀𝑟(𝑟) . The contrast function 𝜒  at a point 𝑟  is defined by 

Equation (4.1) 

𝜒 = (𝜎 − 𝜎𝑏) + 𝑗𝜔𝜀0(𝜀𝑟 − 𝜀𝑟
𝑏)                     (4.1) 

where 𝜀0 is the vacuum permittivity, and ω is the angular frequency. The conductivity 𝜎 and 

relative permittivity 𝜀𝑟 of the imaging object are the unknown parameters that will be measured. 

As shown in Figure 4.6, the background medium is taken to be a rectangular solid and 

subdivided into 𝐾  sub-squares (cells or voxels). Each cells of the background and 

inhomogeneous medium (object of interest) is characterized by relative permittivity 𝜀𝑟  and 

conductivity 𝜎. Table 4.2 shows the average parameters of each tissue for our numerical analysis. 

The value of malignant tissue (cancer) is set higher than those of adipose tissues and slightly high 

than fibro glandular tissues. The high contrast between malignant and adipose tissues provides 

significant rationale for the advantages of microwave imaging in breast cancer detection.  
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Figure 4.6 Discretized imaging area 

Table 4.2 Dielectric properties of breast model 

Parameter Background Chest wall Adipose Fibro glandular Cancer 

𝜺𝒓 8.2 57 7 25 – 40 52 

𝝈 [S/m] 0.15 2 0.4 1.0 – 2.2 4 

 

For the object of interest, we propose two simple breast models for investigation. The 

composition of our imaging object are as follows: 

(1) Breast I:  

Composed of the adipose tissue and cancer, based on the high contrast between these 

two tissues. A hemispherical distribution of fibro glandular tissue is also added. Here, 

the complex permittivity of fibro glandular is  {𝜀𝑟 , 𝜎} =  {35, 1.5 [S/m]}, and 

distributed uniformly. This represents a simple model of breast cancer.  

(2) Breast II:  

Chest wall is added which represents a complicated model of breast, and tissue-

mimicking of real breast shown in Figure 2.1. Here, the fibro glandular distribution in 

Breast I is changed to randomly distributed, and its complex permittivity is 

characterized according to Table 4.2. 
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The above mentioned breast models are summarized in Table 4.3. Figure 4.7 shows the 

configuration of breast models. After the breast models discretized into K  cubic cells, the 

dielectric properties are allocated to each cells, according to tissues type in Table 4.2. Here, the 

cancer accounts for one cell. Note that, the radius of cancer is 10 mm and 4 mm for 12-mm 

resolution and 8-mm resolution, respectively. The example of characterization of dielectric 

properties to each tissue for Breast II is shown in Figure 4.8.  

Table 4.3 Breast models composition 

Breast ID Chest wall Adipose Fibro glandular Cancer 

Breast I  ✔ ✔ (H*) ✔ 

Breast II ✔ ✔ ✔ (R*) ✔ 

✔: the considered elements 

*H: hemispherical, R: random distribution 

 

          

(a) Breast I                 (b) Breast II 

A: Adipose tissue, B: Fibro glandular tissue, C: Cancer, D: Chest wall 

Figure 4.7 Configuration of proposed breast model 
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Figure 4.8 Allocation of dielectric properties into cells for Breast II 
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CHAPTER 5 

NUMERICAL RESULTS & DISCUSSION 

5.1 Overview 

Numerical programs using MATLAB have been developed to investigate the impact of 

diversity polarizations and correlation coefficient on the complex permittivity reconstruction. 

Three type of polarizations are evaluated, which are vertical polarization (VP), horizontal 

polarization (HP), and multi-polarization (MP). The numerical simulations were done according 

to proposed array configurations and characterized breast model. The total field within the 

scattering object was calculated in the forward problem based on the Method of Moment (MoM), 

and the nonlinear relationship is solved with appropriate inverse problems approach. The results 

were divided based on two different inverse problem approaches, i.e., Newton-Kantorovich (NKT) 

and Distorted Born Iterative Method (DBIM).  

5.2 Simulation Setup and Performance Metrics 

In order to obtain accurate and high resolution of image reconstruction, the following 

assumptions have been made for all numerical simulations: 

(1) For biomedical applications in MWI, only a single frequency of 2.5 GHz is used. 

(2) Non-Debye model of Equation (2.1) is used. Therefore, only relative permittivity 

𝜀𝑟 and conductivity 𝜎 are the physical quantities of interest. 

(3) For simplicity, a point source is used for the transmitting antennas. 

(4) The analysis region is limited only to the imaging breast, which is the background 

is not included, to reduce the number or unknowns. 

(5) Apply a simple bound constraints to reduce the span of the solution space.  
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Along with above assumptions, the numerical simulations according to polarizations, 

inverse problem approaches, array configuration, and breast models are categorized in Table 5.1.  

Table 5.1 Categorized numerical simulations 

Configuration ID Number of 

antennas 

Breast ID* Inverse Problem 

NKT DBIM 

32NKT_Br.I 32 Br.I ✔  

32DBIM_Br.II 32 Br.II  ✔ 

36DBIM_Br.II 36 Br.II  ✔ 

✔: the considered elements 

*: Br.I = Breast I, Br.II = Breast II 

 

In all numerical simulations of Table 5.1, the performance considerations of quantitative 

comparisons between reconstructions for 𝜀𝑟 and 𝜎 are as follows: 

(1) The 3-D image reconstruction, 

(2) The dielectric property in 2-D distribution, 

(3) The correlation of coefficient between adjacent antennas, 

(4) The quality factor (or known as similarity or fidelity), 

(5) The error measure based on the normalized root mean square (RMSE). 

 

Performance in criterion (1) generates the quantitative images of breast model in 3-D 

distribution. Whereas the performance in criterion (2) shows the quantitative 2-D distribution with 

respect to cell number by vectorized the 3-D quantities. 
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Performance in criterion (3) is calculated to evaluate quantitatively the diversity of 

measurements data obtained by changing polarizations. The average correlation of coefficient 

between adjacent antennas, ρ is written in Equation (5.1). N is the total number of antennas and 

t is the current transmitting antenna. Here, it is necessary to remove the transmitting antenna and 

its pair to calculate the correlation of adjacent elements. 

ρ =
1

𝑁
|∑

∑ 𝑋𝑡,2𝑛−1 𝑋𝑡,2𝑛
𝑁/2
𝑛=1,𝑡≠𝑛

√𝑋𝑡,2𝑛−1 𝑋𝑡,2𝑛−1
∗√𝑋𝑡,2𝑛 𝑋𝑡,2𝑛

∗

𝑁

𝑡=1

| 

(5.1) 

Performance in criterion (4) is intended as a measure of the qualitative similarity between 

actual and estimated quantity. The two 3-D quantities to be compared are vectorized and the metric 

is calculated as the cosine of the angle between the vectors. Let ϕ be the angle between two 

quantities represented by vectors of 𝑞1 (actual quantity) and 𝑞2 (estimated quantity). The quality 

factor (QF) or fidelity measure is written in Equation (5.2). The ideal fidelity curve would have a 

peak of unity, corresponding to a perfect reconstruction. 

QF = cos(𝜙) =
(𝑞1

𝑇𝑞2)

‖𝑞1‖2‖𝑞2‖2
 

                        (5.2) 

Lastly, performance in criterion (5) is designed to represent the error relative to the actual 

dielectric properties of two parameter estimates with a single metric. The proposed error metric is 

given in Equation (5.3). K is the total number of voxels in volume V which also denotes the 

length of each parameter vector. The hat notation denotes an estimated quantity. 

𝑒𝑟𝑚𝑠𝑒 =
1

√𝐾
(‖

𝜀𝑟 − 𝜀𝑟̂

𝜀𝑟
‖

2

+ ‖
𝜎 − 𝜎̂

𝜎
‖

2
) 

                    (5.3) 
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5.3 Newton-Kantorovich (NKT) approach 

Here, we apply the Newton-Kantorovich (NKT) in the inverse scattering problem. The 

imaging region including the background are discretized to 405 cubic cells to obtain 12-mm 

resolution. In accordance with assumption criterion (4), the number of unknowns in the analysis 

region is 108 cells. We assumed the breast model is immersed in the background medium with 

complex permittivity of  {𝜀𝑟 , 𝜎} = {6.2, 0.15 [S/m]}. The complex permittivity for initial guess is 

{𝜀𝑟 , 𝜎} = {7, 0 [S/m]}, and the value chosen is closer to those of adipose tissue. The iteration is 

terminated when the norm of residual error of scattering data reached 1×10-3 or when the iteration 

reached the maximum iteration number, which is 20 iterations.  

5.3.1 32-elements antenna and Breast I (32NKT_Br.I) 

The simulation results for Breast I and corresponding polarizations after 10 iterations are 

presented. Figure 5.1 shows the 3-D distribution images of the two unknown parameters. The 

relative permittivity 𝜀𝑟 and conductivity 𝜎 are on the left and right of each images. The actual 

model of Breast 1 is shown in Figure 5.1(a). The fibro glandular tissues are uniformly distributed 

within adipose tissue and its presence is indicated by yellow and cyan in relative permittivity and 

conductivity, respectively. The cancer accounts for one cell, and its existence is red and marked 

with an arrow.  

Figure 5.1(b)-(d) show the results using vertical, horizontal, and multi-polarization, 

respectively, for transmitting and receiving data. From Figure 5.1(b), we could not reconstruct the 

imaging breast for both relative permittivity and conductivity using vertical polarization. Figure 

5.1(c) gradually reconstruct the shape of fibro glandular tissue, but could not estimates the cancer 

in conductivity using horizontal polarization. In contrast, Figure 5.1(d) clearly reconstruct the 

imaging breast and indicates the cancer presence for both parameters using multi-polarization. 
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(a) Actual model    (b) Vertical polarization 

 

 

(c) Horizontal polarization    (d) Multi-polarization  

Figure 5.1 Actual and estimated 3-D image reconstructions for 32NKT_Br.I 

Figure 5.2 shows the 2-D distribution of imaging region in the cross section which 

includes the cancer cell. The x-axis indicates the x-coordinate of the voxel and the y-axis indicates 

either the relative permittivity or conductivity. The actual value is shown by black dash line. The 

cancerous cell accounts for one cell and its actual value is  {𝜀𝑟 , 𝜎}  = {52, 4 [S/m]}. The 

reconstructed parameters of the cancer for the different polarizations are as follows. Vertical 

polarization (VP):  {𝜀𝑟 , 𝜎}  = {25.96, 1.05 [S/m]}, Horizontal polarization (HP):  {𝜀𝑟 , 𝜎}  = 

{55.04, 1.52 [S/m]}, and multi-polarization (MP):  {𝜀𝑟 , 𝜎}= {50.61, 3.53 [S/m]}. The fibro-

glandular tissue is approximately reconstructed using horizontal and multi-polarization. Overall, 

we observed that the dielectric properties of the cancer are lower than the expected setting values 

when using uniform polarizations (vertical polarization and horizontal polarization). However, the 

dielectric properties of the cancer are improved and accurately estimated using multi-polarization.  
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(a) Relative permittivity    (b) Conductivity 

Figure 5.2 Dielectric property distributions including the cancer voxel for 

32NKT_Br.I 

Next, the performance in criterion (3) is discussed. The average correlation of coefficient 

of adjacent antennas for all polarizations are given as {VP, HP, MP} = {0.9968, 0.9964, 0.1530}. 

Overall, the correlation coefficient was significantly reduced when using multi-polarization 

compared to uniform polarizations. An adequate image reconstruction was obtained using multi-

polarization owing to the low correlation coefficient, as shown in Figure 5.1 – 5.2.  

Figure 5.3(a) illustrates the quality factor are increasing significantly and towards unity 

when using horizontal and multi-polarization, whereas the quality factor for vertical polarizations 

is gradually increasing along with iteration number. At 10th iteration, the quality factor reached 

0.8415, 0.9797, 0.9993 when using vertical, horizontal, and multi-polarization, respectively. 

Meanwhile, in Figure 5.3(b), the RMSE for vertical polarization is gradually decreasing, and the 

RMSE for horizontal and multi-polarization perform similar behavior. However the RMSE for 

multi-polarization start to decrease drastically after 6th iteration compared to uniform polarizations.  
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(a) Quality Factor    (b) RMSE  

Figure 5.3 Performance metrics for 32NKT_Br.I 

Since, high resolution and sensitivity are required in microwave imaging system, the 

imaging resolution is increased to 8 mm. This can be done by discretizing the imaging region to 

1183 cubic cells, where the number of unknowns in the analysis region is 369 voxels. Since 

configuration 32NKT_Br.I_MP in Figure 5.1(d) provide better results, this configuration is 

implemented to evaluate the 8-mm resolution imaging. Here, the maximum iteration number is set 

to 250 iterations.  

Figures 5.4 shows the numerical results of the relative permittivity and conductivity in 8-

mm resolution when using multi-polarization. In Figure 5.4(a), the fibro glandular tissue was 

reconstructed gradually over the adipose tissue region for relative permittivity and conductivity. 

After 250th iteration, the image reconstruction for both parameters were unsuccessful. Meanwhile, 

the dielectric property distribution of analysis region is shown in Figure 5.4(b). The x-axis 

indicates the voxel number, and the y-axis indicates the actual and estimated value for either 

relative permittivity or conductivity. The actual value is defined by red solid line, whereas the 

reconstructed parameters are marked with blue dot. The cancerous cell accounts for one cell. We 

observed that the estimated dielectric properties in analysis region, particularly for fibro-glandular 

tissues, are scattered than the expected setting values, regardless using multi-polarization. Thus, 
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the imaging method using NKT in 8-mm resolution can be considered ineffective and require 

further improvements. 

 

 

(a) 3-D image reconstruction 

 

 

(b) Dielectric property distribution 

Figure 5.4 Results using multi-polarization in 8-mm resolution for 32NKT_Br.I 



 

65 

5.3.2 Discussion on 32NKT_Br.I 

The non-linear inverse scattering problems are solved by Newton-Kantorovich (NKT) 

approach using least square method, as written in Equation (3.25). The Jacobian J is full rank, 

therefore all of the vectors in the Jacobian matrix are linearly independent. The inverse matrix is 

an ill-conditioned situation. The regularization parameter γ  was determined empirically to 

decrease the condition number in 12-mm resolution imaging. For multi-polarization, the quality 

factor is close to unity, and the iterative algorithm stopped at 10th iteration, due to the termination 

criterion (1×10-3), as shown in Figure 5.5. These performances indicate that a small number of 

iterations is suffice for accurate image reconstruction when using multi-polarization. Therefore, 

the results shown in Figure 5.1 – 5.3 were based on 10th iteration for reasonable comparison 

between different polarizations.  

Moreover, low correlation coefficient due to multi-polarization leads to sufficient image 

reconstruction in Figure 5.1(d). This performance metric can be considered as a suitable parameter 

in determining antenna configuration. However, further investigation is needed to relate the 

correlation coefficient with image reconstruction, regarding the configuration of horizontal 

polarization. 

 

 

Figure 5.5 Convergence between different polarizations for 32NKT_Br.I 

http://stattrek.com/help/glossary.aspx?Target=Vectors
http://stattrek.com/help/glossary.aspx?Target=Linear_dependence_of_vectors
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The NKT method creates difficulties in dielectric properties reconstruction despite multi-

polarization configuration, such as low resolution and high computational cost. As shown in Figure 

5.4, this method failed to reconstruct the analysis region with 8-mm resolution, regardless using 

multi-polarization, and neither empirical method nor L-curve method in regularization. It also 

involves high computational cost, because of the extensive calculations of the inverse matrix 

performed to compute the Jacobian in higher resolution. Figure 5.6 displays the computation of 

Jacobian calculation using NKT approach in MATLAB code, where D : Jacobian matrix, N : 

total number of unknowns in the analysis region, NR : number of transmitting antennas, T : 

estimated contrast in N, G : the Green’s function between cells in the analysis region, KB : the 

Green’s Function between transmitting antenna and the analysis region, and Ec : calculated total 

field. The inverse matrix calculation, inSG, for the computation of Jacobian matrix is performed 

at each iteration, thus increase the computation cost, especially for higher resolution. In 8-mm 

resolution imaging, 22 seconds are taken for one iteration, and 1 hour 36 minutes are taken for 250 

iterations (CPU Intel® Core™ i3-4130 @ 3.40 GHz, RAM 4.00 GB). The calculation cost was 

considerably large. Therefore, an alternative approach for inverse problem is required to overcome 

these limitations. 

 

Figure 5.6 Jacobian calculation in NKT approach 

inSG = (eye(3*N)-T*G)^-1; 
D = []; 
    for l=1:NR 
        D = [D; KB*inSG*diag(Ec(3*N*(l-1)+1:3*N*l))]; 
    end 
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5.4 Distorted Born Iterative Method (DBIM) approach 

As an alternative to NKT method in Section 5.3, we employ the Distorted Born Iterative 

Method (DBIM) in the inverse scattering problem. Similarly, we discretized the imaging region to 

1183 cubic cells to obtain 8-mm resolution. Here, the Breast II will be evaluated. The number of 

unknowns including the chest wall is 538 voxels. The dielectric properties of background medium 

for the relative permittivity and conductivity is {𝜀𝑟 , 𝜎} = {8.2, 0.15 [S/m]}, meanwhile the initial 

guess is {𝜀𝑟 , 𝜎} = {9, 0 [S/m]}.  

5.4.1 32-elements antenna and Breast II 

The impact of polarizations using 32-elements antenna is examined. Besides that, we also 

investigate the responses at different antenna positions than those in Figure 4.4(a). This is to show 

the impact on physical measurements using the analysis of the correlation coefficient of the 

received data on the image reconstruction. 

Figure 5.7(a) is the actual model of Breast II and the cancer is marked by an arrow for 

clarity. Here, 10% of the volume ratio of breast model is occupied by fibro-glandular tissues that 

are distributed randomly within the adipose tissue. The existence of chest wall is omitted to clearly 

show the contrast between tissues in breast model. Figure 5.7(b)-(d) show the results of the 3-D 

reconstructed images after 250 iterations, using vertical, horizontal, and multi- polarization, 

respectively. As shown in Figure 5.7(b), the shape of fibro glandular tissue is gradually 

reconstructed but insufficient, when vertical polarization antennas are used. Meanwhile, the image 

reconstruction cannot be performed correctly neither for fibro glandular tissue nor cancer when 

using horizontal polarization in Figure 5.7(c). However, the results in Figure 5.7(d) indicate that 

the image reconstruction of the breast model is adequate when using multi-polarization antennas 

for transmitting and receiving. The fibro glandular tissues were approximately reconstructed and 

the cancer presence is distinct for relative permittivity and conductivity.  
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(a) Actual model                        (b) Vertical polarization 

 

 

(c) Horizontal polarization                   (d) Multi-polarization 

Figure 5.7 Actual and estimated 3-D image reconstructions for 32DBIM_Br.II 

Figures 5.8 shows the setting and reconstruction values of the dielectric properties of the 

cancer voxel in the x-axis direction. The reconstructed parameters of the cancer for the different 

polarizations are as follows. Figure 5.8(a) demonstrates that the relative permittivity of the cancer 

and the fibro-glandular tissue are low when using vertical and horizontal polarization. 

Nevertheless, the reconstruction value obtained using multi-polarization is approaching to the 

actual value for both tissues. Meanwhile, the conductivity of the cancer and fibro-glandular tissue 

are improved and estimated approximately when using multi-polarization, whereas other 

polarizations perform reverse results. Table 5.2 shows the reconstructed relative permittivity and 

conductivity values of the cancer when using different polarizations. For multi-polarization, the 

reconstructed percentage was -14.29% and -14% for relative permittivity and conductivity, 

respectively. Overall, the results indicate that vertical and horizontal polarization provide different 

information of the image reconstruction and dielectric properties. The multi-polarization array 

configuration consistently performed better than uniform polarizations.  
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(a) Relative permittivity   (b) Conductivity 

Figure 5.8 Dielectric property distributions in the cross section including the cancer 

voxel for 32DBIM_Br.II 

Table 5.2 Reconstructed values of cancer in different polarizations for 

32DBIM_Br.II 

*Pola.: Polarization  

 

In addition, we investigated the impact on image reconstruction by the analysis of the 

correlation coefficient of the received data between adjacent antennas in our imaging sensor. 

Different antenna positions in y-axis with different polarizations were also considered. First, we 

examined the positions of the antennas shown in Figure 4.4(a), with the upper antenna at 36 mm 

and the lower antenna at 12 mm (Position 1). Table 5.3 summarizes the correlation coefficients for 

different polarizations and positions. At Position 1, we observed that uniform polarizations achieve 

Parameter Actual value Vertical Pola.* Horizontal Pola. Multi-Pola. 

𝜺𝒓 52 22.8 29.35 44.57 

𝛔 [𝐒 𝒎⁄ ] 4 9.18 23.98 3.44 
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correlation coefficient close to 1 and the correlation coefficient of the multi-polarization is 0.1459, 

which is significantly low compared to the uniform polarizations. Next, we changed the position 

of the upper antenna to 24 mm and lower antenna to 8 mm (Position 2). For Position 3, 32 mm and 

16 mm are assigned for the upper and lower antenna, respectively. The results for Position 2 and 

Position 3 are tabulated in Table 5.3. We observed that the results for both positions show a similar 

trend to that exhibited at Position 1.  

Overall, the correlation coefficient of the receiver pair was significantly reduced when 

using multi-polarization compared to uniform polarizations. At Position 1, the high correlation 

coefficient when using vertical and horizontal polarizations associate that the image reconstruction 

and the reconstructed values of dielectric properties were unseccessful. Meanwhile, an adequate 

image reconstruction was obtained using multi- polarization because of the low correlation 

coefficient, as shown in Figures 5.7 – 5.8. 

Table 5.3 The correlation coefficient between different positions of the antennas for 

32DBIM_Br.II 

Position Position of antenna 

(upper, lower) mm 

Vertical 

Polarization 

Horizontal 

Polarization 

Multi 

Polarization 

1 36, 12 0.8029 0.7381 0.1459 

2 24, 8 0.9461 0.9080 0.1506 

3 32, 16 0.9210 0.8530 0.1998 

 

Moreover, the correlation coefficient of the multi-polarization at Position 3 is slightly 

higher than that at Position 1. Figure 5.9 shows the x-axis projection of the actual and 

reconstruction values of the dielectric properties including the cancer voxel obtained using multi-

polarization at different positions. These results demonstrate that positions with low correlation 
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coefficients reconstruct the dielectric properties sufficiently. Therefore, we can conclude that a low 

correlation coefficient is a viable specification for successful image reconstruction. 

 

 

(a) Relative permittivity   (b) Conductivity 

 

 

(c) Reconstructed dielectric properties at cross section view 

Figure 5.9 Dielectric property distributions between different positions of the antenna 
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The performance metrics for 100 iterations are shown in Figure 5.10. The dielectric 

properties of chest wall is assumed known at the initial guess, and its property varies iteratively. 

The chest wall occupies 169 voxels (31.4%) of 538 voxels in the analysis region, hence the initial 

value of quality factor for all polarizations is 0.9672, as shown in Figure 5.10(a). In Figure 5.10(a), 

the quality factor for multi-polarization is moving towards unity, meanwhile the quality factor for 

vertical and horizontal polarizations are decreasing with increasing iteration number. At 250th 

iteration, the quality factor for all polarizations are given as {VP, HP, MP} = {0.6932, 0.6179, 

0.9687}. In Figure 5.10(b), the RMSE for vertical and horizontal polarization are increasing, 

whereas the RMSE for multi-polarizations are decreasing along with iteration number. Thus, the 

image reconstruction using uniform polarization were poor compared with multi-polarization, as 

shown in Figure 5.7, particularly for horizontal polarization in Figure 5.7(c). 

Overall, the results from Figure 5.7 – 5.10 indicate that the vertical and horizontal array 

configurations perform different outcomes from each other, and vertical polarization gives slightly 

better results than those with horizontal polarization. The array configuration with multi-

polarization which gives low correlation coefficient performs well than uniform polarizations to 

determine the image reconstruction and the dielectric property distributions of a simple breast 

model. Furthermore, in Breast II, the cancer is adjacent to fibro-glandular tissues and the contrast 

difference between the tissues is small. The findings confirm that we can detect the cancer 

accurately with the presence of fibro-glandular tissues by employing multi-polarization. 

These results demonstrate that polarization diversity with low correlation coefficient do 

not degrade information quality compared to uniform polarization configurations and may 

represent a viable parameter for image reconstruction in microwave tomography aimed at breast 

cancer detection. 
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(a) Quality factor 

 

 

(b) RMSE 

Figure 5.10 Performance metrics for 32DBIM_Br.II  
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5.4.2 Discussion on 32DBIM_Br.II 

In a situation of larger objects with large contrast to the background medium, a non-linear 

method is needed. Here, the Distorted Born Iterative Method (DBIM) is implemented where it 

uses Born approximation to linearize the non-linear relation of Equation (3.29) at each iteration. 

In the Born approximation, the unknown total field within the actual permittivity in the analysis 

region 𝐸𝑡  is approximated by the background medium field, 𝐸𝑏 , that is, the total field of 

estimated permittivity distribution. In other words, 𝐸𝑏  replace 𝐸𝑡  in Equation (3.29). DBIM 

method begins with an initial guess for the background permittivity that may include any available 

a priori information about the object permittivity. In this case, the initial guess was chosen to be 

close to those of adipose tissues. 

In contrast to NKT approach in Figure 5.6, DBIM does not require inverse matrix 

calculation for the computation of the Jacobian matrix D. Figure 5.11 shows the implementation 

of Jacobian calculation using DBIM approach in MATLAB code, where D : Jacobian matrix, N : 

total number of unknowns, NR : number of transmitting antenna, Ec : calculated total field, and 

KB : the Green Function’s between transmitting antenna and the analysis region. 

 

Figure 5.11 Jacobian calculation in DBIM approach 

D = []; dPH = []; 

    for l = 1:NR 

        Eb = Ec(3*N*(l-1)+1:3*N*l).'; 

        Eb = Eb(ones(1,NR),:); 

        KE = KB.*Eb; 

        Ke = KE(:,1:N)+KE(:,N+1:2*N)+KE(:,2*N+1:3*N);  

        Aa = [real(Ke) real(j*w*eo*Ke); imag(Ke) imag(j*w*eo*Ke)]; 

        D = [D; aa]; 

    end 
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In 8-mm resolution imaging, 16 seconds are taken for one iteration, and 24 minutes are 

taken for 250 iterations (CPU Intel® Core™ i3-4130 @ 3.40 GHz, RAM 4.00 GB). This step can 

reduce about 57 minutes (59.9%) of computation time significantly for 8-mm resolution imaging, 

compared to NKT method.  

In order to solve the system of linear equations, the contrast perturbations or solution can 

be determined by Gauss-Newton method (empirical method) or Tikhonov method. The 

regularization parameter in first method can be determined by empirically according to the 

convergence of the process, as shown in Equation (3.25) – (3.27). Whereas, in latter method, the 

regularization parameter and solution can be obtained by L-curve method, as explained in Section 

3.3.3. Therefore, to choose an appropriate regularization parameter in every iteration of DBIM is 

difficult. Even though the multi-polarization configuration is used, the results using these methods 

were insufficient, particularly in conductivity, as shown in Figure 5.12 – 5.13. In Figure 5.13, the 

actual value is defined by red solid line, whereas the estimated value is defined by blue asterisk. 

The dielectric property distribution of chest wall are scattered. Still, we observed that the L-curve 

method perform better reconstruction compared to empirical method. 

 

 

(a) Empirical method     (b) L-curve method 

Figure 5.12 3-D distribution using two solving techniques for 32DBIM_Br.II 
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(a) Empirical method    (b) L-curve method 

Figure 5.13 Dielectric property distribution using two solving techniques for 

32DBIM_Br.II 

Therefore, another technique to solve the system of linear equations was implemented 

using Bi-Conjugate Gradient Stabilized Method (Bi-CGSTAB) algorithm [84]. This algorithm is 

rather stable, converge smoother and produces more accurate solutions. The algorithm of the pre-

conditioned with Bi-CGSTAB method for solving linear equations Ax = b  is explained in 

Appendix C. The preconditioning is referred to as diagonal scaling. 

We utilized the bicgstab command of MATLAB at the requested tolerance and number 

of iterations to solve the system of linear equations. For a linear equation of Ax = b, the unknown 

x is determined by x = bicgstab(A, b, tol,maxit), where tol and maxit specifies the tolerance 

of the method and the maximum number of iterations, respectively. Here, we assumed that the 

regularization parameter determined by empirical method is empirically good.  

Figure 5.14 shows the implementation of Bi-CGSTAB method in MATLAB code, where 

D : Jacobian matrix, N : total number of unknowns, g : a regularization parameter determined 

by empirical method, dPH : difference between measured and calculated scattered field, and ds : 
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solutions or contrast perturbations (i.e., x). From Figure 5.15, we observed that Bi-CGSTAB 

performs better result than those in Figure 5.13. 

 

 

 

 

 

 

 

Figure 5.14 Contrast perturbations determined by Bi-CGSTAB method 

 

Figure 5.15 Dielectric property distribution using Bi-CGSTAB for 32DBIM_Br.II 

Q = D'*D+g*eye(2*N); 
DD = diag(Q); 

DD = DD.^-1; 

DD = diag(DD);  
Qt = DD*Q; 
c = D'*dPH; 
ct = DD*c; 
ds = bicgstab(Qt,ct,1e-3,1000); 
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The comparison on performance metrics for 100 iterations using three solving techniques 

of nonsymmetrical linear systems is shown in Figure 5.16. We observed that the quality factor 

performance of Bi-CGSTAB is superior to empirical and L-curve method. Similarly, the RMSE of 

Bi-CGSTAB is gradually decreasing along with iteration number. Moreover, we can see that the 

normalized error of Bi-CGSTAB converges faster, and its convergence behavior was much 

smoother towards iteration number compared to other two methods. The numerical results using 

Bi-CGSTAB method were shown in Figure 5.7 – 5.10, and 5.15. 

 

 

Figure 5.16 Performance metrics between three solving techniques for 32DBIM_Br.II 

https://en.wikipedia.org/wiki/System_of_linear_equations
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5.4.3 36-elements antenna and Breast II 

From Section 5.4.1 and 5.4.2, the effectiveness of multi-polarization to transmit and 

receive antennas in image reconstruction are confirmed. Hence, we proposed 36-elements of array 

configuration as illustrated in Figure 4.5, which is completely utilize the multi-polarization 

approach in Figure 4.5(b). Here, the input setting of simulation and other assumptions are in the 

same way as implemented in Section 5.4.1 and 5.4.2.  

Figure 5.17 shows the 3-D distribution of image reconstruction for single polarization and 

multi-polarization. Here, the region of chest wall is shown, and the cancer presence is marked with 

an arrow. From Figure 5.17(b), the fibro glandular tissue were reconstructed successfully for both 

parameters, but we could not estimate the cancer for conductivity. In contrast, Figure 5.17(c) 

gradually reconstruct and estimates the cancer for both parameters using multi-polarization. 

 

 

(a) Actual model 

 

 

(b) Single polarization    (c) Multi-polarization 

Figure 5.17 Actual and estimated 3-D image reconstructions for 36DBIM_Br.II 
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Meanwhile, Figure 5.18 shows the dielectric properties distribution for the analysis region. 

The reconstructed parameters of the cancer for different polarizations are as follows. Single 

polarization (SP):  {𝜀𝑟 , 𝜎} = {52.70, 1.10 [S/m]}, and multi-polarization (MP):  {𝜀𝑟 , 𝜎} = {46.09, 

3.36 [S/m]}. We observed that the relative permittivity of cancer is accurately estimated, and the 

conductivity of cancer is significantly low when using single polarization. Nevertheless, the 

conductivity of cancer are improved and approximately estimated using multi-polarization. The x-

axis projection of the actual and reconstruction values of the dielectric properties including the 

cancer voxel obtained is shown in Figure 5.19. These results also demonstrate that the 

configuration with multi-polarization reconstruct the dielectric properties sufficiently compared to 

single polarization.  

 

 

(a) Relative permittivity    (b) Conductivity 

Figure 5.18 Dielectric property distribution for 36DBIM_Br.II 
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(a) Actual 

 

 

(b) Single polarization   (c) Multi-polarization 

Figure 5.19 Reconstructed dielectric properties at cross-section for 36DBIM_Br.II 

5.4.4 Discussion on 36DBIM_Br.II 

From results in Figure 5.17 – 5.19, we have verified that 36-elements antenna array can 

reconstruct the imaging object in 8-mm resolution. These results are supported by the average 

correlation of coefficient of antennas and the performance metrics. The average correlation of 

coefficient of antennas for two kind of polarizations are given as {SP, MP} = {0.1853, 0.1780}. 

The correlation coefficient was slightly reduced when using multi-polarization compared to single 

polarization. The combination of vertical polarization on the side panel and horizontal polarization 

on the top panel in the single polarization configuration gives low correlation coefficient, hence 

an adequate image reconstruction was obtained, compared to uniform polarizations in Section 

5.4.1. This is also resulted from the increment on number of measurements, thus can reduce the 

ill-posedness of inverse problem. In addition, the multi-polarization configuration can enhance the 

reconstruction of the imaging object, compared to single polarization.  
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The performance metrics for 100 iteration is shown in Figure 5.20. The quality factor for 

both polarizations are increasing and towards unity along with iteration number. At 250th iteration, 

the quality factor reached 0.9727 and 0.9770 when using single and multi-polarization, 

respectively. Meanwhile, the RMSE for single polarization is gradually decreasing, and the RMSE 

for multi-polarization start to decrease drastically after 20th iteration. Furthermore, we observe that 

the normalized error of both polarizations gradually converges towards iteration number, and the 

convergence behavior of multi-polarization was much smoother after 30th iteration.  

 

 

Figure 5.20 Performance metrics for 36DBIM_Br.II 

Overall, the array configuration with single polarization and multi polarization perform 

similar results, for a given breast model, but multi-polarization gives slightly better results than 

the other. Thus, there is no reason to avoid introducing additional polarizations in Figure 4.5(a) if 
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doing so will yield other benefits. The results also indicate that multi-polarization configurations 

enhance imaging performance compared to single polarization configuration, and thus represent 

viable design options for microwave breast imaging systems. 
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CHAPTER 6 

CONCLUSION 

6.1 Conclusion 

Microwave imaging based for breast cancer detection has the potential to be used for 

cancer diagnosis and to replace currently used clinical methods, based on its low cost, non- 

ionizing radiation, efficiency and small dimensions. The work included in this thesis is the 

continuity from the establishment of the microwave mammography research at Shizuoka 

University under supervision of Professor Yoshihiko Kuwahara. 

In this thesis, we proposed microwave tomography method as an alternative to UWB 

radar imaging for breast cancer detection. In microwave tomography, it is necessary to increase 

the amount of diverse observation data for accurate image reconstruction of the dielectric 

properties of the imaging area. The multi-polarization method has been proposed as a suitable 

technique for the acquisition of a variety of observation data. The effectiveness of employing 

multi-polarization to reconstruct images is investigated. In order to investigate the effectiveness of 

multi-polarization, a compact-sized imaging sensor using multi-polarization for breast cancer 

detection is presented. Along with this, a simple breast model and a tissue-mimicking of real breast 

model were also proposed. The physical considerations related to image reconstruction also has 

been examined, where an analysis of the correlation coefficient of the received data of adjacent 

antennas was performed to interpret the imaging results.  

Microwave tomography is an inverse scattering problem which is typically nonlinear and 

ill-posed. For the forward problem, MoM is used to obtain the measurement scattering data. For 

the inverse problem, two approaches were proposed to solve the non-linear inverse scattering 

method, i.e., Newton-Kantorovich and DBIM. In addition, three types of solving techniques to 
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reduce the ill-posedness and perform more stable solution were also introduced. The ill-posed of 

non-linear problem can be avoided by the choosing appropriate solving techniques, considerable 

number of unknowns used in the analysis region, and the use of a priori information. 

A feasibility study has been performed on breast model with Newton-Kantorovich in 12-

mm resolution. In this case, the dielectric permittivity was well reconstructed for multi-

polarization configuration even with empirically determined regularization parameter. 

Furthermore, we have confirmed the effectiveness of applying multi-polarization to transmit and 

receive antennas to determine the dielectric property distributions in 8-mm resolution using DBIM. 

This is achieved using our proposed compact-sized of antenna array configuration and a mimicked 

breast model. In addition, the correlation coefficient of multi-polarization is relatively low 

compared to those corresponding to uniform polarizations. For this reason, the correlation 

coefficient may represent a viable parameter for image reconstruction in microwave tomography 

aimed at breast cancer detection.  

6.2 Recommendation 

MoM is the conventional approach for solving volume integral equations in the frequency 

domain. However, given the complex nature and large number of unknowns, MoM for volume 

integral equations is too computationally expensive. The Finite Difference Time Domain (FDTD) 

method is the most widely used numerical modeling technique to model the propagation of 

electromagnetic waves in biological tissue [85]. In the forward problem, FDTD can be considered 

to substitute MoM in order to model the propagation and calculate the scattering field accurately. 

Furthermore, higher resolution and sensitivity of image reconstruction can be accomplished by 

FDTD approach. 

An accurate FDTD breast model must account for the physical geometry of the breast, 

the natural heterogeneity and dispersive nature of normal breast tissue. This approach is differ to 
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our proposed method that model the variance of dielectric properties as being randomly distributed. 

The details on MRI-derived breast model is explained in Appendix D. The numerical simulations 

in 12-mm resolution using the breast model and 36-elements antenna with simulator FEMTET 

were reported by Mr. Ozawa Naoyuki in [82] and still need further improvements. 

Lastly, Debye model for complex permittivity in Equation (2.3) is commonly used as the 

dispersive behavior of breast tissue. Since this model has three unknown parameters in the imaging 

domain, which are 𝜀∞, ∆𝜀 and 𝜎𝑠, a linear Debye relationship between the three parameters can 

be implemented, as proposed in [86]. The resulting linear model will reduce the number of 

unknowns to one parameter, 𝜀𝑠  per cell in the computation. This method can reduce the 

computational cost and the complexity of the microwave breast imaging problem. 
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APPENDICES 

Appendix A  

Method of Moments (MoM) [7] 

 

A.  Integral Formulation 

Consider an arbitrary shape of a finite body with relative permittivity 𝜀𝑟(𝑟)  and 

conductivity 𝜎(𝑟), illuminated in free-space by electromagnetic wave, The induced current in the 

body generates a scattered field 𝐸𝑠, which may be represented by Equation (A.1).  

𝐽𝑒𝑞(𝑟) = [𝜎(𝑟) + 𝑗𝜔(𝜀𝑟(𝑟) − 𝜀0)]𝐸(𝑟) =  𝜏(𝑟)𝐸(𝑟)              (A.1) 

The first-term of Equation (A.1) is the conduction current and the second terms is the 

polarization current. 𝐽𝑒𝑞 is the free-space current density, 𝜀0 is the free-space permittivity, and 

𝐸(𝑟) is the total electric field inside the body. According to Van Bladel’s paper, the scattered field 

 𝐸𝑠 at an arbitrary point inside the body can be expressed as follows. 

𝐸𝑠(𝑟) = ∫ 𝐽𝑒𝑞(𝑟
′) ∙ [𝑃𝑉 𝐺(𝑟, 𝑟′) −

𝐼𝛿(𝑟 − 𝑟′)

3𝑗𝜔𝜀0
] 𝑑𝑉′

𝑉

 

= PV ∫ 𝐽𝑒𝑞(𝑟
′) ∙

𝑉
𝐺(𝑟, 𝑟′) 𝑑𝑉′ − 

𝐽𝑒𝑞(𝑟)

3𝑗𝜔𝜀0
                   (A.2) 

𝐺(𝑟, 𝑟′) = −𝑗𝜔𝜇0 [1 +
𝛻𝛻

𝑘0
2] 𝜓(𝑟, 𝑟′)                        (A.3) 

𝜓(𝑟, 𝑟′) =
𝑒𝑥𝑝(−𝑗𝑘0|𝑟−𝑟′|)

4𝜋|𝑟−𝑟′|
,  𝑘0 = 𝜔(𝜇0𝜀0)

1/2                 (A.4) 

𝜇0 is the permeability of free space, 𝐺(𝑟, 𝑟′) is the free-space tensor Green’s function, and the 

PV symbol denotes the principal value of the integral as defined by Van Bladel.  

The total electric field  𝐸(𝑟) inside the body may written as the sum of the incident 

electric field  𝐸𝑖 and the scattered field  𝐸𝑠, as shown in Equation (A.5). 

𝐸(𝑟) = 𝐸𝑖(𝑟) + 𝐸𝑠(𝑟)                        Eq. (A.5) 
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Substituting Equation (A.2) in (A.5) and rearranging terms gives the desired integral equation for 

𝐸(𝑟) in Equation (A.6). In Equation (A.6), 𝐸𝑖(𝑟) is the incident electric field and is a known 

quantity. 𝐸(𝑟) is the unknown total electric field inside the body. 𝐸(𝑟) can be determined from 

Equation (A.6) by method of moment (MoM). 

[1 +
𝜏(𝑟)

3𝑗𝜔𝜀0
] 𝐸(𝑟) − 𝑃𝑉 ∫ 𝜏(𝑟′)𝐸(𝑟′) ∙ 𝐺(𝑟, 𝑟′)𝑑𝑉′

𝑉
= 𝐸𝑖(𝑟)       Eq. (A.6) 

 

B. Transformation to Matrix Equation 

We may represent the inner product 𝐸(𝑟′) ∙ 𝐺(𝑟, 𝑟′) as follows: 

E(r′) ∙ G(r, r′) = [

Gxx(r, r
′) Gxy(r, r

′) Gxz(r, r
′)

Gyx(r, r
′) Gyy(r, r

′) Gyz(r, r
′)

Gzx(r, r
′) Gzy(r, r

′) Gzz(r, r
′)

] [

Ex(r
′)

Ey(r
′)

Ez(r
′)

]        (A.7) 

Let  𝑥1 = 𝑥          𝑥2 = 𝑦          𝑥3 = 𝑧 

Then, 𝐺𝑥𝑝𝑥𝑞
(𝑟, 𝑟′) is given by 

Gxpxq
(r, r′) = −jωμ0 [δpq +

1

k0
2

∂2

∂xq ∂xp
]ψ(r, r′),     p, q = 1,2,3        (A.8) 

The matrix in Equation (3A7) is symmetric. Each scalar component of (A.6) may be written as 

[1 +
𝜏(𝑟)

3𝑗𝜔𝜀0
] 𝐸𝑥𝑝

(𝑟) − 𝑃𝑉 ∙ ∫ 𝜏(𝑟′)
𝑉

[∑ 𝐺𝑥𝑝𝑥𝑞
(𝑟, 𝑟′)𝐸𝑥𝑞

(𝑟′)

3

𝑞=1

] 𝑑𝑉′ = 𝐸𝑥𝑝
𝑖 (𝑟), 𝑝 = 1,2,3 

(A.9) 

Starting from exact integral equation formulations in Equation (A.6), the MoM is utilized to 

generate matrix equations for the forward scattering problem. We partition the body into N 

subvolumes and assume that 𝐸(𝑟) and 𝜏(𝑟) are constant in each subvolume. We will denote the 

m-th subvolume by 𝑉𝑚, and denote the position of a representative interior point of 𝑉𝑚 by 𝑟𝑚. 

By requiring that (A.9) be satisfied at each 𝑟𝑚, after some rearranging, we obtain 
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[1 +
𝜏(𝑟𝑚)

3𝑗𝜔𝜀0
] 𝐸𝑥𝑝

(𝑟𝑚) − ∑ ∑ [𝜏(𝑟𝑛) 𝑃𝑉 ∙ ∫ 𝐺𝑥𝑝𝑥𝑞
(𝑟𝑚, 𝑟′) 𝑑𝑉′

𝑉𝑛
]𝑁

𝑛=1
3
𝑞=1 𝐸𝑥𝑞

(𝑟𝑛) = 𝐸𝑥𝑝
𝑖 (𝑟𝑚)      

(A.10) 

We define the following quantity in Equation (A.11) 

𝐺̅𝑥𝑝𝑥𝑞

𝑚𝑛
= 𝜏(𝑟𝑛) 𝑃𝑉 ∫ 𝐺𝑥𝑝𝑥𝑞

(𝑟𝑚, 𝑟′) 𝑑𝑉′
𝑉𝑛

                (A.11) 

Equation (A.10) can rewritten in Equation (A.12) 

∑ ∑ [𝐺̅𝑥𝑝𝑥𝑞

𝑚𝑛
− 𝛿𝑝𝑞𝛿𝑚𝑛 (1 +

𝜏(𝑟𝑚)

3𝑗𝜔𝜀0
)]

𝑁

𝑛=1

3

𝑞=1

𝐸𝑥𝑞
(𝑟𝑛) = −𝐸𝑥𝑝

𝑖 (𝑟𝑚),     𝑚 = 1,2,⋯ ,𝑁,   𝑝 = 1,2,3. 

(A.12) 

[𝐺𝑥𝑝𝑥𝑞
] is 𝑁 × 𝑁 matrix, and the elements are defined by 

𝐺𝑥𝑝𝑥𝑞

𝑚𝑛 = 𝐺̅𝑥𝑝𝑥𝑞

𝑚𝑛
− 𝛿𝑝𝑞𝛿𝑚𝑛 [1 +

𝜏(𝑟𝑚)

3𝑗𝜔𝜀0
]               (A.13) 

The [𝐸𝑥𝑝
] and [𝐸𝑥𝑝

𝑖 ] be 𝑁-dimensional vectors and given as Equation (A.14) 

[𝐸𝑥𝑝
] = [

𝐸𝑥𝑝
(𝑟1)

⋮
𝐸𝑥𝑝

(𝑟𝑁)
],         [𝐸𝑥𝑝

𝑖 ] = [

𝐸𝑥𝑝
𝑖 (𝑟1)

⋮
𝐸𝑥𝑝

𝑖 (𝑟𝑁)
] ,   𝑝 = 1,2,3.             (A.14) 

As 𝑚 and 𝑝 range over all possible values in Equation (A.12), the following matrix 

representation of Equation (A.6) is obtained. 

[
 
 
 
 
 
[𝐺𝑥𝑥] | [𝐺𝑥𝑦] | [𝐺𝑥𝑧]

− − | − − | − −

[𝐺𝑦𝑥] | [𝐺𝑦𝑦] | [𝐺𝑦𝑧]

− − | − − | − −

[𝐺𝑧𝑥] | [𝐺𝑧𝑦] | [𝐺𝑧𝑧] ]
 
 
 
 
 

[
 
 
 
 
𝐸𝑥

− −
𝐸𝑦
− −
𝐸𝑧 ]

 
 
 
 

= −

[
 
 
 
 
[𝐸𝑥

𝑖 ]
− −
[𝐸𝑦

𝑖 ]
− −
[𝐸𝑧

𝑖]]
 
 
 
 

                 (A.15) 

Symbolically, we rewritten Equation (A.15) as Equation (A.16) 

[𝐺][𝐸] = −[𝐸𝑖]                               (A.16) 

[𝐺] is a 3𝑁 × 3𝑁 matrix, while [𝐸] and [𝐸𝑖] have dimension 3𝑁. The total electric field at 

each of the 𝑁 points can be determined by inverting [𝐺] in Equation (A.16). 



 

90 

C. Evaluation of Matrix Elements 

Equation (A.11) and (A.13) define the elements of [𝐺𝑥𝑝𝑥𝑞
]. 

𝐺𝑥𝑝𝑥𝑞

𝑚𝑛 = 𝜏(𝑟𝑛) 𝑃𝑉 ∫ 𝐺𝑥𝑝𝑥𝑞
(𝑟𝑚, 𝑟′) 𝑑𝑉′

𝑉𝑛
− 𝛿𝑝𝑞𝛿𝑚𝑛 [1 +

𝜏(𝑟𝑚)

3𝑗𝜔𝜀0
]       (A.17) 

The off-diagonal elements of [𝐺𝑥𝑝𝑥𝑞
] is considered.  

𝐺𝑥𝑝𝑥𝑞

𝑚𝑛 = 𝜏(𝑟𝑛) ∫ 𝐺𝑥𝑝𝑥𝑞
(𝑟𝑚, 𝑟′) 𝑑𝑉′

𝑉𝑛
,      𝑚 ≠ 𝑛.             (A.18) 

At first approximation, we have 

𝐺𝑥𝑝𝑥𝑞

𝑚𝑛 = 𝜏(𝑟𝑛)𝐺𝑥𝑝𝑥𝑞
(𝑟𝑚, 𝑟𝑛)∆𝑉𝑛,      𝑚 ≠ 𝑛.               (A.19) 

∆𝑉𝑛 = ∫  𝑑𝑉′.
𝑉𝑛

 

We use Equation (A.8) to evaluate 𝐺𝑥𝑝𝑥𝑞
(𝑟𝑚, 𝑟𝑛). 

𝐺𝑥𝑝𝑥𝑞

𝑚𝑛 =
−𝑗𝜔𝜇0𝑘0𝜏(𝑟𝑛)∆𝑉𝑛exp(−𝑗𝛼𝑚𝑛)

4𝜋𝛼𝑚𝑛
3

 

∙ [(𝛼𝑚𝑛
2 − 1 − 𝑗𝛼𝑚𝑛)𝛿𝑝𝑞 + cos𝜃𝑥𝑝

𝑚𝑛 

∙ cos𝜃𝑥𝑞

𝑚𝑛(3 − 𝛼𝑚𝑛
2 + 3𝑗𝛼𝑚𝑛)],        𝑚 ≠ 𝑛.              (A.20) 

𝛼𝑚𝑛 = 𝑘0𝑅𝑚𝑛            𝑅𝑚𝑛 = |𝑟𝑚 − 𝑟𝑛| 

cos𝜃𝑥𝑝

𝑚𝑛 =
(𝑥𝑝

𝑚 − 𝑥𝑝
𝑛)

𝑅𝑚𝑛 
        cos𝜃𝑥𝑞

𝑚𝑛 =
(𝑥𝑞

𝑚 − 𝑥𝑞
𝑛)

𝑅𝑚𝑛 
 

𝑟𝑚 = (𝑥1
𝑚, 𝑥2

𝑚, 𝑥3
𝑚)                   𝑟𝑛 = (𝑥1

𝑛, 𝑥2
𝑛, 𝑥3

𝑛). 

For diagonal elements of [𝐺𝑥𝑝𝑥𝑞
], Equation (A.17) becomes 

𝐺𝑥𝑝𝑥𝑞

𝑛𝑛 = 𝜏(𝑟𝑛) 𝑃𝑉 ∫ 𝐺𝑥𝑝𝑥𝑞
(𝑟𝑛, 𝑟′) 𝑑𝑉′

𝑉𝑛
− 𝛿𝑝𝑞 [1 +

𝜏(𝑟𝑛)

3𝑗𝜔𝜀0
]       (A.21) 

In Equation (A.21), we approximate 𝑉𝑛 by a sphere of equal volume centered at 𝑟𝑛, and 𝑎𝑛 is 

the radius of the sphere. 

𝐺𝑥𝑝𝑥𝑞

𝑛𝑛 = 𝛿𝑝𝑞 {
−2𝑗𝜔𝜇0𝜏(𝑟𝑛)

3𝑘0
2 [exp(−𝑗𝑘0𝑎𝑛)(1 + 𝑗𝑘0𝑎𝑛) − 1] − [1 +

𝜏(𝑟𝑛)

3𝑗𝜔𝜀0
]}   (A.22) 

𝑎𝑛 = (
3∆𝑉𝑛
4𝜋

)
1/3
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Appendix B  

Analytical of Jacobian [54] 

 

An analytic expression for the Jacobian matrix 𝐽  is derived. Consider first-order 

variations of Equation (3.13) and (3.14) 

𝛿𝑒𝑣 = 𝐺𝑟𝛿[𝐶𝑒𝑣]                          (B.1) 

𝛿𝑒𝑣
𝑠 = 𝐺𝑣

𝑠𝛿[𝐸𝑣𝑐]                          (B.2) 

Where 𝐸𝑣𝑐 = 𝐶𝑒𝑣 

𝛿[𝐶𝑒𝑣] ≈ [𝛿𝐶]𝑒𝑣 + 𝐶[𝛿𝑒𝑣]                     (B.3) 

Substituting Equation (B.1) into (B.3) gives 

𝛿[𝐶𝑒𝑣] = [𝐼 − 𝐶𝐺𝑟]−1[𝛿𝐶]𝑒𝑣                   (B.4) 

Substituting Equation (B.4) into (B.2) gives 

𝐽𝑣 = 𝐺𝑣
𝑠[𝐼 − 𝐶𝐺𝑟]−1𝐸𝑣                       (B.5) 

For the 𝑀 × 𝑁 derivative matrix 𝐽𝑣 relating the field and contrast variations 𝛿𝑒𝑣
𝑠 and 𝛿𝑐. The 

computation of [𝐼 − 𝐶𝐺𝑟]−1  is straightforward since its transposed [𝐼 − 𝐺𝑟𝐶]−1  has been 

computed in the forward problem.  

Gathering the 𝑣 points of matrices 𝐽𝑣 in one matrix yields the Jacobian 𝐽, and 𝐸 is the total 

field inside the object region. 

𝐽 = 𝐺𝑠[𝐼 − 𝐶𝐺𝑟]−1𝐸                          (B.6) 
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Appendix C  

Preconditioning Bi-Conjugate Gradient Stabilized Method (Bi-CGSTAB) Algorithm [84]  

 

The algorithm of the preconditioned with Bi-CGSTAB for solving linear equations  

𝐴𝑥 = 𝑏 is as follow. 𝐾 : preconditioning matrix, i.e., 𝐾 ≈ 𝐴. 𝑟𝑖 : residual vectors. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

This scheme too delivers the variables 𝑥𝑖 and 𝑟𝑖 corresponding to the original system 𝐴𝑥 = 𝑏. 

Preconditioning matrix K is determined from the matrix D obtained by extracting the diagonal 

elements of the matrix the A. This preconditioning is generally referred as diagonal scaling. 

𝑥0 is an initial guess (zero vector) to calculate 𝑟0 = 𝑏 − 𝐴𝑥0 

𝑟0̂ is an arbitrary vector, such that (𝑟0̂, 𝑟0) ≠ 0, e.g., 𝑟0̂ = 𝑟0 

𝜌0 = 𝛼 = 𝜔0 = 1,     𝑣0 = 𝑝0 = 0 

for i = 1, 2, 3,⋯ , 

𝜌𝑖 = (𝑟0̂, 𝑟𝑖−1); 

𝛽 = (𝜌𝑖 𝜌𝑖−1⁄ )(𝛼 𝜔𝑖−1⁄ ); 

           𝑝𝑖 = 𝑟𝑖−1 + 𝛽(𝑝𝑖−1 − 𝜔𝑖−1𝑣𝑖−1); 

          𝑦 = 𝐾−1𝑝𝑖 

          𝑣𝑖 = 𝐴𝑦; 

           𝛼 = 𝑝𝑖 (𝑟0̂, 𝑣𝑖);⁄  

            𝑠 = 𝑟𝑖−1 − 𝛼𝑣𝑖; 

              𝑧 = 𝐾−1𝑠; 

                𝑡 = 𝐴𝑧 

             𝜔𝑖 = (𝐾1
−1𝑡, 𝐾1

−1𝑠) (𝐾1
−1𝑡, 𝐾1

−1𝑡);⁄  

              𝑥𝑖 = 𝑥𝑖−1 + 𝛼𝑦 + 𝜔𝑖𝑧; 

             if 𝑥𝑖 is accurate enough then quit; 

              𝑟𝑖 = 𝑠 − 𝜔𝑖𝑡; 

end 
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Appendix D  

MRI-derived Breast Model and Numerical Simulation using Finite Difference Time Domain 

(FDTD) method 

 

A. FDTD Breast Model 

Mr. Yuki Ono from Sumitomo Electric Industries, Ltd. has developed an FDTD breast 

model based on the actual MRI images obtained from Hamamatsu University School of Medicine, 

Hamamatsu Shizuoka, as shown in Figure D.1. The breast model with 1.0 mm grid dimension is 

consists of skin, adipose tissue, fibro glandular tissue, malignant tissue (cancer) and chest wall 

(muscle). The breast model is characterized to corresponding dielectric properties shown in Table 

D.1. In FDTD numerical simulation, the grid dimension for the breast model is downgraded to 3.0 

mm. For sake of simplicity, the background, muscle and skin are neglected in the analysis region. 

Therefore, the analysis region only consists of adipose tissue, fibro-glandular tissue and malignant 

tissue (cancer), as shown in Figure D.2. The number of unknown to be reconstructed within the 

analysis region is 6727 cells.  

 

 

(a) MRI image    (b) Numerical breast model 

Figure D.1 MRI-derived numerical breast phantom by Kuwahara et. al. [82];      

A: background, B : adipose tissue, C : fibro-glandular tissue, D: malignant tissue (cancer) 
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Table D.1 Dielectric properties in FDTD breast model 

Parameter Background 

± dev.* 

Adipose ± 

dev.* 

Glandular ± 

dev.* 

Cancer ± 

dev.* 

Muscle 

± dev.* 

Skin ± 

dev.* 

𝜺𝒓 6.2 ± 0.01 6.5 ± 0.05 40.0 ± 0.10 54 ± 0.05 50.0 ± 

0.05 

35.0 ± 

0.05 

𝝈 [S/m] 0.15 ± 

0.01 

0.20 ± 

0.05 

1.0 ± 0.10 1.3 ± 

0.05 

1.13 ± 

0.05 

0.8 ± 

0.05 

*dev. = deviation 

 

 

(a) zy-view 

 

(b) xy-view 

Figure D.2 MRI-derived FDTD breast model 
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B. FDTD Antenna Configuration 

In FDTD numerical simulation, the single frequency used is 1.8 GHz, which gives the 

length of the antenna leg is 4. The dimension for the enclosed antenna array is width 144 × 

length 144 × height 60 mm. Here, the z-axis is taken as vertical polarization, meanwhile x-axis 

or y-axis is horizontal polarization. Figure D.3 shows the one side of 32-element antenna array 

configuration modeled in FDTD for three types of polarization. The antenna arrangements for each 

side are identical, and the four side-panels are parallel to either the xz- or yz-plane. 

 

   

(a) Vertical polarization (VP)    (b) Horizontal polarization (HP) 

 

 

(c) Multi-polarization (MP) 

Figure D.3 32-element antenna array configuration in FDTD 
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C. Numerical Simulations 

The numerical simulations using Figure D.2 – D.3 after 50 iterations are presented. The 

initial guess is given by {𝜀𝑟 , 𝜎} = {6.5, 0.2 [S/m]}, which is equivalent to the adipose tissue. A 

simple bound constraints is applied to the contrast perturbations to reduce the span of the solution 

space that leads to an underdetermined, and ill-posed system.  

Figure D.4 – D.6 show the actual and reconstruction images for all polarizations in axial 

view, sagittal view, and coronal view, respectively. In the actual model, the fibro-glandular tissue 

and cancer are shown in cyan and yellow, respectively for both parameters. The shape and location 

of fibro-glandular tissue and cancer were unsatisfied when using the configurations in Figure 

D.3(a) and Figure D.3(b). In contrast, the quality of image reconstructions are improved using the 

configuration in Figure D.3(c). Overall, the multi-polarization configuration exhibit better image 

reconstructions than the vertical and horizontal polarizations. 
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(a) Actual 

 

(b) Vertical polarization 

 

(c) Horizontal polarization 

 

(d) Multi-polarization 

Figure D.4 Image reconstruction in axial view 
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(a) Actual 

 

(b) Vertical polarization 

 

(c) Horizontal polarization 

 

(d) Multi-polarization 

Figure D.5 Image reconstruction in sagittal view 
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(a) Actual 

 

(b) Vertical polarization 

 

(c) Horizontal polarization 

 

(d) Multi-polarization 

Figure D.6 Image reconstruction in coronal view
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The actual (red solid line) and estimated values (blue asterisk) of the dielectric properties 

in the analysis region for all polarizations is shown in Figure D.7. Overall, the multi-polarization 

configuration enhanced the performance of uniform polarizations to yield better reconstruction. 

 

 

(a) Vertical polarization 

 

 

(b) Horizontal polarization 

 

 

(c) Multi-polarization 

Figure D.7 Dielectric property distribution among polarizations 
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The average correlation of coefficient of adjacent antennas for all polarizations are given 

as {VP, HP, MP} = {0.8070, 0.4998, 0.2448}. Overall, the correlation coefficient was reduced 

when using multi-polarization compared to uniform polarizations. An adequate image 

reconstruction was obtained using multi-polarization owing to the low correlation coefficient, as 

shown in Figure D.4 – D.7. Meanwhile, Figure D.8 shows the performance metrics in FDTD 

modeling. Figure D.8(a) illustrates that the quality factor are increasing when using vertical and 

multi-polarization along with iteration number. At 20th iteration, the quality factor of multi-

polarization reached 0.8735 and maintaining its value. In Figure D.8(b), the RMSE for vertical 

and multi-polarization are gradually decreasing, and the RMSE for multi-polarization start to 

decrease drastically after 8th iteration compared to uniform polarizations. 

 

 

(a) Quality Factor 

 

(b) RMSE  

Figure D.8 Performance metrics in FDTD modeling for all polarizations 
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Appendix E  

Polynomial Fitting of Breast Model  

 

In this section, the dielectric properties of relative permittivity, 𝜀𝑟 and conductivity, 𝜎 

is compared to obtain a linear model (polynomial fit) to mend their gap. Fitting requires a 

parametric model that relates the response data to the predictor data with one or more coefficients. 

The result of the fitting process is an estimate of the model coefficients [87]. Based on Least Square 

(LS) method described in [88], the polynomial fit is used to fit a linear model to data and provide 

approximation of dielectric properties. A linear model is defined as an equation that is linear in the 

coefficients. The linear least-squares fitting can be illustrated by a first-degree polynomial as 

written in Equation (E.1). In MATLAB, two commands are used to solve the unknown coefficients 

𝑝1 and 𝑝2, which are polyfit and polyval. 

𝑦 = 𝑝1𝑥 + 𝑝2                             (E.1) 

Figure E.1 shows the linear model between relative permittivity and conductivity for 

MRI-based breast model of Figure D.2. Since the adipose tissue, fibro-glandular tissue and cancer 

are considered in the analysis region, the linear model in Figure E.1(b) with Equation (E.2) is 

chosen as the appropriate linear model to approximate the dielectric properties involved. 

𝜎 = 0.0233𝜀𝑟 + 0.0531                      (E.2) 

In FDTD reconstruction algorithm, Equation (E.2) is applied in the contrast function to 

replace the conductivity, 𝜎. Therefore, the unknown parameter in the contrast function for linear 

model is only the relative permittivity, 𝜀𝑟. This method can decrease the number of unknowns to 

estimate the contrast perturbations.  
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(a)              (b)  

Figure E.1 Linear model for MRI-based breast model (a) based on all tissues (b) based on 

adipose, fibro-glandular and cancerous tissue 

 

 The antenna array with multi-polarization configuration of Figure D.3(c) is used as the 

comparison between the non-linear and linear model. The image reconstruction in axial view, 

dielectric property distribution and the performance metrics after 10th iteration are shown in Figure 

E.3 – E.5, respectively. For non-linear model in Figure E.3(b), the fibro-glandular tissue was 

gradually reconstructed, but the existence of cancer is unidentified. In contrast, the shape and 

location of cancer is distinctly visible when using the linear model, as shown in Figure E.3(c). In 

linear model, the decrease of unknown parameter can reduce the ill-posedness of inverse problem. 

Overall, the linear model show better image reconstruction than the non-linear model.  

Meanwhile, the actual (red solid line) and estimated values (blue asterisk) of the dielectric 

properties in the analysis region for all polarizations is shown in Figure E.4. After 10th iteration, 

the estimated values in Figure E.4(a) are low estimated, meanwhile in Figure E.4(b), the values 

are highly estimated. Overall, the linear model in Figure E.4(b) emphasize the estimation values 

of the non-linear model in Figure E.4(a) to yield an adequate image reconstruction.  
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(a) Actual model 

 

(b) Non-linear model 

 

(c) Linear model 

 

(d) Mix model 

Figure E.3 Image reconstruction in axial view for non-linear, linear and mix model 
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(a) Non-linear model 

 

(b) Linear model 

 

(c) Mix model 

Figure E.4 Dielectric property distribution for non-linear, linear and mix model 

 

Figure E.5(a) illustrates that the quality factor of linear model is increasing significantly 

after 3rd iteration, compared to the non-linear model. However, the quality factor of linear model 

decreasing after 5th iteration. In Figure E.5(b), the RMSE of linear model is decreasing remarkably 

after 2nd iteration, and it start to increase after 5th iteration. These results might lead to the 

overestimated in estimated values of linear model in Figure E.4(b). 
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(a) Quality factor 

 

 

(b) RMSE 

Figure E.5 Performance metrics in FDTD modeling for non-linear, linear and mix model 

 

Therefore, a mix model, which consists of linear and non-linear model, is proposed to 

improve the performances. This step can be realized by applying the linear model in first 5 

iterations, and the non-linear model after 5th iterations in the FDTD reconstruction algorithm. The 

results of mix model are shown in Figure E.3(d) and Figure E.4(c). Overall, the mix model 

enhanced the performances of the linear model to yield better reconstruction. The quality factor 

and RMSE of linear model is improved after 6th iteration when using the mix model. In conclusion, 

a mix of linear and non-linear model can produce sufficient image reconstruction, even in a small 

iteration number. 
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